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Abstract

We characterize sequences of positive integers (a1, a2, . . . , an) for which the 2 × 2

matrix
(
an − 1
1 0

)(
an−1 − 1
1 0

)
· · ·

(
a1 − 1
1 0

)
is either the identity matrix Id, its

negative − Id, or square root of − Id. This extends a theorem of Conway and Coxeter
that classifies such solutions subject to a total positivity restriction.

1 Introduction andmain results
LetMn(a1, . . . , an) ∈ SL(2,Z) be the matrix defined by the product

Mn(a1, . . . , an) :=
(
an − 1
1 0

) (
an−1 − 1
1 0

)
· · ·

(
a1 − 1
1 0

)
, (1.1)

where (a1, a2, . . . , an) are positive integers. In terms of the generators of SL(2,Z)

S =
(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

the matrix (1.1) reads:Mn(a1, . . . , an) = TanS Tan−1S . . .Ta1S. Every matrix A ∈ SL(2,Z)
can be written in the form (1.1) in many different ways.
The goal of this paper is to describe all solutions of the following three equations

Mn(a1, . . . , an) = Id, (Problem I)
Mn(a1, . . . , an) = −Id, (Problem II)
Mn(a1, . . . , an)2 = −Id. (Problem III)

Problem II, with a certain total positivity restriction, was studied in [7,8] under the
nameof “frieze patterns.’ The theoremofConway andCoxeter [7] establishes a one-to-one
correspondence between the solutions of Problem II such that a1+a2+· · ·+an = 3n−6,
and triangulations of n-gons. This class of solutions will be called totally positive. Coxeter
implicitly formulated Problem II in full generality, when he considered frieze patterns
with zero and negative entries; see [9].
The following observations are obvious.
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(a) Cyclic invariance: if (a1, a2 . . . , an) is a solution of one of the above problems, then
(a2, . . . , an, a1) is also a solution of the same problem. It is thus often convenient
to consider n-periodic infinite sequences (ai)i∈Z with the cyclic order convention
ai+n = ai. Note, however, that although the property of being a solution of Prob-
lem III is cyclically invariant, in this case the matrix Mn(a1, . . . , an) changes under
cyclic permutation of (a1, . . . , an).

(b) The “doubling” (a1, . . . , an, a1, . . . , an) of a solution of Problem II is a solution of
Problem I, and the “doubling” of a solution of Problem III is a solution of Problem II.

(c) A particular feature of Problem III (distinguishing it from Problems I and II) is that it
is equivalent to a single equation trMn(a1, . . . , an) = 0. This Diophantine equation
was considered in [6], where the totally positive solutions were classified.

1.1 The main result

We introduce the following combinatorial notion.

Definition 1.1 (a) We call a 3d-dissection a partition of a convex n-gon into sub-
polygons by means of pairwise non-crossing diagonals, such that the number of
vertices of every sub-polygon is a multiple of 3.

(b) The quiddity of a 3d-dissection of an n-gon is the (cyclically ordered) n-tuple of
numbers (a1, . . . , an) such that ai is the number of sub-polygons adjacent to i-th
vertex of the n-gon.

In other words, a 3d-dissection splits an n-gon into triangles, hexagons, nonagons,
dodecagons, etc. Classical triangulations are a very particular case of a 3d-dissection. The
notion of quiddity is similar to that of Conway and Coxeter [7].
We will also consider centrally symmetric 3d-dissection of 2n-gons. Quiddities

of such dissections are n-periodic, i.e., are doubled n-tuples of positive integers:
(a1, . . . , an, a1, . . . , an). We call a half-quiddity any n-tuple of consecutive numbers
(ai, ai+1, . . . , ai+n−1) in a n-periodic dissection of a 2n-gon.
The following statement, proved in Sect. 3, is our main result.

Theorem 1 (i) Every quiddity of a 3d-dissection of an n-gon is a solution of Problem I or
Problem II. Conversely, every solution of Problem I or II is a quiddity of a 3d-dissection
of an n-gon.

(ii) Ahalf-quiddity of a centrally symmetric 3d-dissectionwhich is a solution of Problem II
is a solution of Problem III, and every solution of Problem III is a half-quiddity of a
centrally symmetric 3d-dissection of a 2n-gon.

To distinguish between the solutions of Problems I and II in Part (i) of the theorem, one
needs to count the total number of sub-polygons with even number of vertices (6-gons,
12-gons, . . .) in the chosen 3d-dissection. If this number is odd, then the corresponding
quiddity is a solutions of Problem I, otherwise, it is a solutions of Problem II.
In order to explain how to construct a solution of Problems I–III starting from 3d-

dissections, we give here a simple example.
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Example 1.2 Consider the following dissection of a tetradecagon (n = 14) into 4 triangles
and 2 hexagons.

3
2 1

1 2

2 1

1 2

2 1

1 2
3

Label its vertices by the numbers of adjacent sub-polygons. Reading these numbers (anti-
clockwise) along the border of the tetradecagon, one obtains a solution of Problem II

(a1, . . . , a14) = (3, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 1, 2, 1).

Furthermore, every half-sequence, for instance (a1, . . . , a7) = (3, 2, 1, 2, 1, 2, 1), is a solu-
tion of Problem III, since the 3d-dissection is centrally symmetric.

To the best of our knowledge, 3d-dissections have not been considered in the literature.
Let us mention that, since the work of Conway and Coxeter, triangulations of various
geometric objects play an important role in the subject; see, e.g., [2,3]. Higher angulations
of n-gons have also been considered; see [5,17].

1.2 The surgery operations

We also give an inductive procedure of construction of all the solutions of Problems I–III.
Consider the following two families of “local surgery” operations on solutions of Prob-
lems I–III.

(a) The operations of the first type insert 1 into the sequence (a1, a2, . . . , an), increasing
the two neighboring entries by 1:

(a1, . . . , ai, ai+1, . . . , an) �→ (a1, . . . , ai + 1, 1, ai+1 + 1, . . . , an). (1.2)

Within the cyclic ordering of ai, the operation is defined for all 1 ≤ i ≤ n. The
operations (1.2) preserve the set of solutions of each of the above problems.

(b) The operations of the second type break one entry, ai, replacing it by a′
i, a

′′
i ∈ Z>0

such that

a′
i + a′′

i = ai + 1,

and insert two consecutive 1’s between them:

(a1, . . . , ai, . . . , an) �→ (a1, . . . , a′
i, 1, 1, a

′′
i , . . . , an). (1.3)

The operations (1.3) exchange the sets of solutions of Problems I and II, and preserve
the set of solutions of Problem III.

The crucial difference between these two classes of operations is that every opera-
tion (1.2) increases the number of sub-polygons of a 3d-dissection by 1, while an opera-
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tion (1.3) keeps this number unchanged. Indeed, an operation (1.2) consists in a gluing an
extra “exterior” triangle, while an operation (1.3) selects one sub-polygon and increases
the number of its vertices by 3. For more details, see Sect. 3.
Note that the operations (1.2) are very well known. Theywere used by Conway andCox-

eter [7]; see also [4,11] andmany other sources. In particular, the totally positive solutions
of Problem II are precisely the solutions obtained by a sequence of operations (1.2); see
“Appendix” section. The operations (1.3) seem to be new. They change the combinatorial
nature of solutions (from triangulations to 3d-dissections), and they also have a geometric
meaning in terms of the homotopy class of a curve on the projective line; see Sect. 5.
For a given n, there are exactly n different operations of type (1.2), while the total

number of different operations of type (1.3) is equal to a1 +· · ·+an. Every operation (1.2)
transforms n into n + 1, while every operation (1.3) transforms n into n + 3.
The following statement, proved in Sect. 2, is an “algorithmic version” of Theorem 1.

Theorem 2 If n = 3, then Problem II has a unique solution:

(a1, a2, a3) = (1, 1, 1), (1.4)

and every solution of Problem I (resp. II) can be obtained from (1.4) by a sequence of the
operations (1.2) and (1.3), such that the total number of operations (1.3) is odd (resp. even).
Conversely, every sequence of operations (1.2) and (1.3) applied to (1.4) produces a solution
of Problem I or II.

Note that, unlike Problems I and II, a solution of Problem III can be reduced, i.e., such
that it cannot be simplified by applying the inverse of the operations (1.2) and (1.3). The
simplest examples of a reduced solutions are (1, 2), (2, 1), for n = 2 and (1, 1, 2, 1, 1),
for n = 5. One has

M5(1, 1, 2, 1, 1) =
(
0 1
−1 0

)
. (1.5)

1.3 Motivations

Matrices (1.1) are ubiquitous, they appear in many problems of number theory, algebra,
dynamics, mathematical physics, etc. The following topics are motivated our study, and
these topics and their relationship with Problems I–III deserve further study.

(a) Consider the linear equation

Vi−1 − aiVi + Vi+1 = 0, (1.6)

with (known) coefficients (ai)i∈Z and (indeterminate) sequence (Vi)i∈Z. It is often
called the discrete Sturm–Liouville, Hill, or Schrödinger equation. There is a one-
to-one correspondence between solutions of Problem I (resp. II) and Eq. (1.6) with
positive integer n-periodic coefficients ai, such that every solution (Vi)i∈Z of the
equation is periodic (resp. antiperiodic):

Vi+n = Vi (resp. Vi+n = −Vi),
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for all i. Indeed, one has:[
Vn+1
Vn

]
= Mn(a1, . . . , an)

[
V1
V0

]
.

In this language, the totally positive solutions of Conway and Coxeter correspond to
non-oscillating equations (1.6); see Sect. 5. Note also that the matrixMn(a1, . . . , an)
is called the monodromy matrix of the Eq. (1.6). It plays an import an role in the
theory of integrable systems; see [24].

(b) The theory of negative continued fractions

[a1, a2, . . . , an] = a1 − 1

a2 − 1

. . . − 1
an

is relevant for the subject of this paper, although in this theory one usually considers
ai ≥ 2 and the matrix Mn(a1, . . . , an) is hyperbolic. Some ideas of the theory have
found application to Farey sequences; see [14,17,22,25] and the “Appendix” section.

(c) The classical moduli space

M0,n := {(v1, . . . , vn) ∈ CP
1 | vi 	= vi+1} /PSL(2,C),

of configurations of n points inCP
1. As a (n−3)-dimensional algebraic variety it can

be described by:

M0,n 
 {
(a1, . . . , an) ∈ C

n |Mn(a1, . . . , an) = −Id
}
.

For instance, forn = 5 themoduli space of configurations of 5 points (v1, v2, v3, v4 , v5)
can be described by 5 cross-ratios:

ai := (vi+1 − vi+4)(vi+2 − vi+3)
(vi+1 − vi+2)(vi+2 − vi+3)

,

that satisfy the equation M5(a1, a2, a3, a4 , a5) = −Id. For more details; see [19–21].
Theorem 1 provides a set of rational points ofM0,n; see Sect. 5 for a construction of
the element ofM0,n associated with a solution of Problem I or II.

(d) Combinatorics of Coxeter frieze patterns [7,8]. Although this is not themain subject
of the paper, we outline in Sect. 6 the class of Coxeter friezes corresponding to
arbitrary solutions of Problems II and III. Note also that classical Farey sequences
can be understood as very particular cases of Coxeter friezes; see [8] (and also [22]). In
particular, the index of a Farey sequence defined in [14] is a totally positive solution
of Problem II. Coxeter frieze is an active area of research; see [19] and references
therein.

(e) Every element of SL(2,Z) can be written in the form (1.1) for some positive integers
(a1, . . . , an) which is an interesting characteristic.We conjecture in Sect. 7 that there
is a canonicalway to associate a 3d-dissection to every element of the groupPSL(2,Z).

1.4 Enumeration

We formulate the problem of enumeration of solutions of Problems I–III. Counting the
number of 3d-dissections of an n-gon can give the upper bound. Note that the totally
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positive solutions of Problem II are enumerated by triangulations of n-gons, so that the
total number of solutions is given by the Catalan numbers. This follows from the Conway
and Coxeter theorem and the fact that a triangulation is determined by its quiddity. We
refer to [13] for a general theorem on enumeration of polygon dissections. However, since
a 3d-dissection is not completely characterized by its quiddity (cf. Sect. 3.3), there are
more dissections than solutions. For a first enumeration test for the set of solutions of
Problem III, see Sect. 4.3.

2 Proof of Theorem 2
In this section, we prove Theorem 2 and give some of its easy corollaries.

2.1 Induction basis

Let us first consider the simplest cases.

(a) If n = 2, then the matrixM2(a1, a2) is as follows:(
a2 −1
1 0

) (
a1 −1
1 0

)
=

(
a1a2 − 1 −a2
a1 −1

)
,

with a1, a2 > 0. Since thismatrix cannot be± Id, Problems I and II have no solutions.
(b) Consider the case n = 3 and assume that the sequence (a1, a2, a3) contains two

consecutive 1’s. Set (a1, a2, a3) = (a, 1, 1). The matrixM3(a1, a2, a3) is then given by(
a −1
1 0

) (
1 −1
1 0

) (
1 −1
1 0

)
=

(
−1 1 − a
0 −1

)
.

Hence, Problem II has one solution (1, 1, 1), corresponding to a = 1, while Problem I
has no solutions.

2.2 Surgery operations onmatrices

Let us analyze how the operations (1.2) and (1.3) act on the matrix (1.1). This is just an
elementary computation.
An operation (1.2) replaces the product of two elementary matrices

(
ai+1 −1
1 0

) (
ai −1
1 0

)

in the expression forMn(a1, . . . , an) by

(
ai+1 + 1 −1

1 0

) (
1 −1
1 0

) (
ai + 1 −1

1 0

)
=

(
aiai+1 − 1 −ai

ai+1 −1

)

=
(
ai+1 −1
1 0

) (
ai −1
1 0

)
. (2.1)

Therefore, an operation (1.2) does not change the matrix:

Mn+1(a1, . . . , ai + 1, 1 , ai+1 + 1, . . . , an) = Mn(a1, . . . , an).

It follows that the operations (1.2) preserve the sets of solutions of Problems I–III.
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Consider now an operation (1.3). Since(
a′′
i −1
1 0

) (
1 −1
1 0

) (
1 −1
1 0

) (
a′
i −1
1 0

)
=

(
1 − a′

i − a′′
i 1

−1 0

)

= −
(
ai −1
1 0

)
, (2.2)

the matrix Mn(a1, . . . , an) changes its sign. If the number of the operations (1.3) is even,
then the sequence of operations also preserves the set of solutions of Problems I and II.

2.3 Induction step

We need the following lemma, which was essentially proved in [7] for Problem II.

Lemma 2.1 Given a solution (a1, . . . , an) of Problem I, II, or III, there exists at least one
value of 1 ≤ i ≤ n, such that ai = 1.

Proof Assume that ai ≥ 2 for all i, and consider the solution (Vi)i∈Z of the Eq. (1.6) with
initial conditions (V0, V1) = (0, 1). Since Vi+1 = aiVi − Vi−1, we see by induction that
Vi+1 > Vi for all i. Therefore, the solution (Vi)i∈Z grows and cannot be periodic.
ThematrixMn(a1, . . . , an) is the monodromymatrix of (1.6). More precisely, let (Vi)i∈Z

be a solution of the Eq. (1.6). Then, for the vector (Vi+1, Vi)t , we have[
Vi+1
Vi

]
=

(
ai −1
1 0

) [
Vi
Vi−1

]
, . . . ,

[
Vi+n
Vi+n−1

]
= Mn(ai, . . . , ai+n)

[
Vi
Vi−1

]
.

Suppose first that Mn(a1, . . . , an) = Id. Then, every solution of (1.6) must be periodic,
which is a contradiction.
If now Mn(a1, . . . , an) = −Id or Mn(a1, . . . , an)2 = −Id, then we can use the doubling

argument to conclude that every solution of (1.6) must be 2n-periodic or 4n-periodic,
respectively.

We are ready to prove that every solution of Problems I and II can be obtained from the
elementary solution (1.4) by a sequence of the operations (1.2) and (1.3).
Given a solution (a1, . . . , an), by Lemma 2.1 there exists at least one coefficient ai which

is equal to 1. There are then two possibilities:
(a) both ai−1, ai+1 ≥ 2;
(b) there are two consecutive 1’s, say ai = ai+1 = 1, i.e., the chosen solution has the

following “fragment”: (. . . , ai−1, 1, 1, ai+2, . . .).
In the case (a), consider the (n − 1)-tuple

(a1, . . . , ai−2, ai−1 − 1, ai+1 − 1, ai+2, . . . , an).

Clearly, the solution (a1, . . . , an) can be obtained from this (n − 1)-tuple by an
operation (1.2). Eq. (2.1) implies that the matrix Mn−1(a1, . . . , ai−2, ai−1 − 1, ai+1 −
1, ai+2, . . . , an) remains equal toMn(a1, . . . , an).
In the case (b), take the (n − 3)-tuple

(a1, . . . , ai−2, ai−1 + ai+2 − 1, ai+3, . . . , an).

The solution (a1, . . . , an) is then a result of the operation (1.3) applied to the coef-
ficient ai−1 + ai+2 − 1. Equation (2.2) implies that Mn−3(a1, . . . , ai−2, ai−1 + ai+2 −
1, ai+3, . . . , an) = Mn(a1, . . . , an).
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The above inverse operations (1.2) and (1.3) can always be applied, unless n = 2, or
unless n = 3 and there are at least two consecutive 1’s.
Theorem 2 is proved. ��

2.4 Simple corollaries

An immediate consequenceofTheorem2 is the followingupper bound for the coefficients.

Corollary 2.2 If (a1, a2, . . . , an) is a solution of one of Problems I, II, or III, then
(i) ai ≤ n − 5 (Problem I);
(ii) ai ≤ n − 2 (Problem II);
(iii) ai ≤ n (Problem III).

Proof The operations (1.3) cannot increase the values of the coefficients ai, while the
operations (1.2) simultaneously increase n and two coefficients by 1.

The next corollary gives expressions for the total sum of the coefficients.

Corollary 2.3 (i) If (a1, a2, . . . , an) is a solution of one of Problems I or II obtained from
the initial solution (a1, a2, a3) = (1, 1, 1) by applying a sequence of S operations (1.2)
and R operations (1.3), then

a1 + a2 + · · · + an = 3S + 3R + 3
= 3n − 6R − 6.

(2.3)

(ii) If (a1, a2, . . . , an) is a solution of Problem III obtained from one of the initial solu-
tions (a1, a2) = (2, 1) or (1, 2) by applying a sequence of S operations (1.2) and R
operations (1.3), then

a1 + a2 + · · · + an = 3S + 3R + 3
= 3n − 6R − 3.

(2.4)

Proof Both the operations (1.3) and (1.2) add 3 to the total sum of the coefficients. Fur-
thermore, the operations (1.2) [resp. (1.3)] increase n by 1 (resp. by 3).

Note that the numbers S and R depend only on the solution (a1, a2, . . . , an) (and inde-
pendent of the choice of the sequence of operations producing the solution). The simplest
case R = 0 is precisely that of totally positive solutions of Conway and Coxeter; see
“Appendix” section.

2.5 Solutions of Problem I for small n

Let us give several examples constructed using the inductive procedure provided by The-
orem 2. We start with the list of solutions of Problem I for n ≤ 8.

(a) Part (i) of Corollary 2.2 implies that Problem I has no solutions for n ≤ 5.
(b) For n = 6, Problem I has the unique solution

(a1, a2, a3, a4 , a5, a6) = (1, 1, 1, 1, 1, 1)

obtained from (1.4) by one operation (1.3).
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(c) For n = 7, one has 7 different solutions:

(a1, a2, a3, a4 , a5, a6, a7) = (2, 1, 2, 1, 1, 1, 1) (2.5)

and its cyclic permutations.
(d) For n = 8, one has 34 different solutions, namely

(a1, . . . , a8) = (3, 1, 1, 1, 1, 2, 2, 1), (3, 1, 2, 1, 1, 1, 2, 1),

(2, 2, 1, 2, 1, 1, 2, 1), (2, 1, 2, 1, 2, 1, 2, 1), (2.6)

and their reflections and cyclic permutations.

2.6 Solutions of Problem II for small n

Below is the list of solutions of Problem II for n ≤ 10.

(a) For n ≤ 8, all solutions of Problem II are given by Conway–Coxeter solutions and
correspond to triangulations of n-gons; see “Appendix” section. The number of solu-
tions for a given n is thus equal to the Catalan number Cn−2, where Cn = 1

n+1
(2n
n
)
.

(b) For n = 9, in addition to 429 Conway–Coxeter solutions, there is exactly one extra
solution:

(a1, . . . , a9) = (1, 1, 1, 1, 1, 1, 1, 1, 1). (2.7)

(c) For n = 10, in addition to 1430 Conway–Coxeter solutions, there are 15 solutions:

(a1, . . . , a10) = (2, 1, 1, 1, 1, 2, 1, 1, 1, 1), (2, 1, 2, 1, 1, 1, 1, 1, 1, 1), (2.8)

and their cyclic permutations.

In Sect. 3.4, we will give the dissections of n-gons corresponding to the above examples.

3 The combinatorial model: 3d-dissections
In this section, we proveTheorem1 deducing it fromTheorem2.Using the combinatorics
of 3d-dissections, we then obtain the formulas for the numbers of surgery operations for
a given solution of Problems I or II. Finally, we revisit the examples from Sects. 2.5 and 2.6
and give their combinatorial realizations.

3.1 Proof of Theorem 1

Part (i). Consider a solution (a1, . . . , an) of Problem I or II. We want to prove that there
exists a 3d-dissection of an n-gon such that its quiddity is precisely the chosen solution.
We proceed by induction on n. By Theorem 2, the chosen solution can be obtained from

the initial solution (1.4) by a series of operations (1.2) and (1.3). Consider the solution (of
length n − 1 or n − 3) obtained by the same sequence but without the last operation.
By induction assumption, this solution corresponds to some 3d-dissection, say D, (of an
(n − 1)-gon or an (n − 3)-gon). There are then two possibilities.

(a) If the last operation in the series is that of type (1.2), then the solution corresponds
to the angulation D with extra exterior triangle glued to the edge (i, i + 1).
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(b) Suppose that the last operation is that of type (1.3). Consider the new 3d-dissection
obtained from D by the following local surgery at vertex i, along a chosen sub-
polygon:

i i′ i′′
1 1

that inserts two new vertices 1, 1 between two copies of the vertex i. This leads to a
3d-dissection of an (n + 3)-gon which is exactly as in the right-hand side of (1.3).

Conversely, given a 3d-dissection of an n-gon, we need to show that its quiddity is a
solution of Problem I or II. This follows from the obvious fact that any 3d-dissection of
an n-gon by pairwise non-crossing diagonals has an exterior sub-polygon. By “exterior,’
we mean a sub-polygon without diagonals which is glued to the rest of the 3d-dissection
along one edge

1 aj

1

1 ai
1 1

Such a 3d-dissection can be reduced by applying the inverse of one of the operations (1.2)
or (1.3). We then proceed by induction.
Part (i) of the theorem follows; the proof of Part (ii) is similar.
Theorem 1 is proved. ��

3.2 Counting the surgery operations

Consider a solution of Problem I or II corresponding to some 3d-dissection. Denote by
Nd is the number of 3d-gons in the 3d-dissection.

Proposition 3.1 Given a solution of Problem I or II constructed from (1.4) by a sequence
of S operations (1.2) and R operations (1.3),

(i) The number S counts the total number of sub-polygons except for the initial one:

S =
∑

d≤[ n3 ]
Nd − 1. (3.1)

(ii) The number of operations of the second type is the weighted sum

R =
∑

d≤[ n3 ]
(d − 1)Nd. (3.2)

In other words, to calculate R, one ignores the triangles, counts hexagons, counts
nonagons 2 times, dodecagons 3 times, etc.
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Proof An operation (1.2) consists in a gluing a triangle. It increases the total number of
sub-polygons by 1. This implies (3.1).
We have proved (see the proof of Theorem 1) that an operation (1.3) does not change

the total number of sub-polygons of a 3d-dissection, but adds 3 new vertices to one of the
existing sub-polygons. Hence (3.2).

3.3 Non-uniqueness

Unlike triangulations, a quiddity does not determine the corresponding 3d-dissection.
Different 3d-dissections may correspond to the same quiddity.1

For instance, this is the case for the following 3d-dissections of the octagon

1 2

2 1

1 2

2 1

1 2

2 1

1 2

2 1

Therefore, one cannot expect a one-to-one correspondence between solutions of Prob-
lems I–III and 3d-dissections. This discrepancy becomesmore flagrant when we consider
3d-dissections of 2n-gons. Indeed, the following 3d-dissection of the tetradecagon (“Kli-
menko’s dissection”)

3
2 1

1 2

2 1

1 2

2 1

1 2
3

is not centrally symmetric, but the corresponding quiddity is 7-periodic. In fact, it coin-
cides with that of Example 1.2.

3.4 Examples for small n

Let us give combinatorial entities of the examples from Sect. 2.
(a) Consider again the solutions of Problem I for small n; see Sect. 2.5. For n = 6,

the unique solution (a1, . . . , a6) = (1, . . . , 1) is given by the hexagon without interior
diagonals.
For n = 7, the unique modulo cyclic permutations solution (2.5) corresponds to a

triangle glued to an hexagon

1
2 2

1 1

1 1

1 This remark and examples were communicated to me by Alexey Klimenko.
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For n = 8, the solutions of Problem I correspond to dissections of the octagon into
hexagon and two triangles. There are exactly four such dissections (modulo reflections
and rotations):

1 2

3 2

1 1

1 1

1 2

3 1

1 1

2 1

1 2

2 1

2 1

1 2

1 2

2 1

1 2

2 1
in full accordance with (2.6).
(b) Consider now the solutions of Problem II discussed in Sect. 2.6. For n = 9, the

solution (2.7) obviously corresponds to the nonagon with no dissection. For n = 10, there
are two possibilities: two glued hexagons and a triangle glued to a nonagon

2
1 1

1 1

1 1

1 1
2

2
1 1

2 1

1 1

1 1
1

(3.3)

This corresponds (modulo cyclic permutations) to the solutions (2.8). The first of the
above dissections, i.e., the “hexagonal” one, will play an important role in Sect. 7.

4 Problem III and zero-trace equation
An elementary observation shows that Problem III is equivalent to a single Diophan-
tine equation, namely trMn(a1, . . . , an) = 0. We show that 3d-dissections allow one to
construct all integer zero-trace unimodular matrices.

4.1 The “Rotundus” polynomial

The trace of the matrix (1.1) is a beautiful cyclically invariant polynomial in a1, . . . , an,
that we denote by Rn(a1, . . . , an). The first examples are:

R1(a) = a,
R2(a1, a2) = a1a2 − 2,

R3(a1, a2, a3) = a1a2a3 − a1 − a2 − a3,
R4(a1, a2, a3, a4) = a1a2a3a4 − a1a2 − a2a3 − a3a4 − a1a4 + 2,

R5(a1, a2, a3, a4 , a5) = a1a2a3a4a5 − a1a2a3 − a2a3a4 − a3a4a5 − a1a4a5 − a1a2a5
+a1 + a2 + a3 + a4 + a5.

The polynomial Rn(a1, . . . , an) was called the “Rotundus” in [6], where it is proved that
Rn(a1, . . . , an) can also be calculated as the Pfaffian of a certain skew-symmetric matrix.
Note that Rn(a1, . . . , an) is the polynomial part of the rational function

a1a2 · · · an
(
1 − 1

a1a2

)(
1 − 1

a2a3

)
· · ·

(
1 − 1

ana1

)
.

4.2 The “Rotundus equation”

An n-tuple of positive integers (a1, . . . , an) is a solution of Problem III if and only if
trMn(a1, . . . , an) = 0. In other words, we have the following.
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Proposition 4.1 Every solution of Problem III is a solution of the equation

Rn(a1, . . . , an) = 0, (4.1)

and vice-versa.

Proof A trace zero element of SL(2,Z) has eigenvalues i and −i. This is equivalent to the
fact that it squares to −Id.

Remark 4.2 Note also that every solution of Problem I or II satisfies the equation
Rn(a1, . . . , an) = 2 or −2, respectively. However, the converse is false: a solution of one
of these equations is not necessarily a solution of Problem I or II. It is also easy to see
that, unlike (4.1), the equation Rn(a1, . . . , an) = ± 2 has infinitely many positive integer
solutions for sufficiently large n. For instance, one has Rn(a, 1, 1) = −2 for any a.

4.3 The list of solutions of Problem III for small n

Let us give a complete list of solutions of Problem III for n ≤ 6.

(a) For n = 2, 3, and 4, all the solutions are given by centrally symmetric triangulations
of a quadrilateral (2), hexagon (6), and octagon (20), respectively.

(b) For n = 5, besides 70 solutions corresponding to centrally symmetric triangulations
of the decagon (see Example 7.11 below), one obtains 5 additional solutions:

(a1, a2, a3, a4 , a5) = (1, 1, 2, 1, 1)

and its cyclic permutations. The corresponding centrally symmetric dissection of a
decagon is the hexagonal dissection in (3.3).

(c) For n = 6, besides 252 solutions corresponding to centrally symmetric triangulations
of the dodecagon, one gets 26 additional solutions:

(a1, a2, a3, a4 , a5, a6) = (3, 1, 2, 1, 1, 1), (2, 2, 1, 2, 1, 1), (2, 1, 2, 1, 2, 1),

their cyclic permutations and reflections.

Wemention that the sequence 2, 6, 20, 75, 278, . . . corresponding to the total number of
solutions of Problem III is not in the OEIS.

5 The rotation index
In this section, we explain how to associate an n-gon in the projective line, i.e., an element
of the moduli spaceM0,n, to every solution of Problem I or II.
We then apply the Sturm theory of linear difference equations to define a geometric

invariant of solutions of Problems I, II, and III. It is given by the index of a star-shaped
broken line in R

2, that can also be understood as the homotopy class of an n-gon in
the projective line, or as the rotation number of the Eq. (1.6). The defined invariant is a
(half)integer. We prove that the index actually counts the number of operations of the
second type (1.3) needed for a solution to be obtained from the initial one.

5.1 Index of a star-shaped broken line

Recall the following geometric notions.
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(a) The index of a smooth closed plane curve is the number of rotations of its tangent
vector.

(b) A smooth oriented (parametrized) closed curve γ (t) in R
2, where t ∈ [0, 1] and

γ (t+1) = γ (t) is star-shaped if it does not contain the origin, and the tangent vector
γ̇ (t) is transversal to γ (t), for all t.

(c) The index of a star-shaped curve can be calculated as the homotopy class of the
projection of γ (t) to RP

1 in the tautological line bundle R
2\{0} → RP

1, i.e., the
rotation number around the origin.

Definitions (a)–(c) obviously extend to piecewise smooth curves, in particular to broken
lines.

Example 5.1 The index of the following star-shaped broken lines:

0 0

is equal to 1 and 2, respectively.

Furthermore, if the curve is antiperiodic, that is if γ (t + 1) = −γ (t), the index is still
well defined, but takes half-integer values.

Example 5.2 The index of the following star-shaped antiperiodic broken lines:

0
0

is equal to 1
2 and 3

2 , respectively.

5.2 The broken line of a matrixMn(a1, . . . , an)

Given a solution (a1, . . . , an) of Problem I, II, or III, let us construct a star-shaped broken
line in R

2. Consider the corresponding discrete Sturm–Liouville equation

Vi+1 = aiVi − Vi−1,

where the set of coefficients ai is understood as an infinite n-periodic sequence (ai)i∈Z.
Choose two linearly independent solutions, V (1) = (V (1)

i )i∈Z and V (2) = (V (2)
i )i∈Z. One

then has a sequence of points in R
2:

Vi =
(
V (1)
i , V (2)

i

)
,

These points form a broken star-shaped line. Indeed, the determinant

W (V (1), V (2)) :=
∣∣∣∣∣∣
V (1)
i+1 V (1)

i

V (2)
i+1 V (2)

i

∣∣∣∣∣∣ ,

usually called theWronski determinant, is constant, i.e., does not depend on i. Therefore,
the sequence of points (Vi)i∈Z inR

2 always rotates around the origin in the same (positive
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or negative, depending on the choice of the two solutions) direction. Note that a different
choice of the solutionsV (1) andV (2) gives the samebroken line,modulo a linear coordinate
transformation in R

2.
If Mn(a1, . . . , an) = Id (resp. −Id), then the broken line thus constructed is periodic,

i.e., Vi+n = Vi (resp. antiperiodic, Vi+n = −Vi). We will be interested in the index of this
broken line.

Remark 5.3 Note that the index of an antiperiodic star-shaped broken line is a well-
defined half-integer. If Mn(a1, . . . , an)2 = −Id, then, using the doubling procedure, we
can still define the index of the corresponding star-shaped broken line as a multiple of 1

2 .

Example 5.4 (a)Consider the sequence (a1, . . . , a6) = (1, 1, 1, 1, 1, 1),which is the solution
of Problem I obtained from (1, 1, 1) by applying one operation (1.3). Choosing the solutions
with the initial conditions (V (1)

0 , V (1)
1 ) = (1, 0) and (V (2)

0 , V (2)
1 ) = (0, 1), one obtains the

following hexagon in R
2: {(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}.

2© 1©

3© 0 0©

4© 5©
The index of this hexagon is 1.
(b) Consider the solution of Problem II (a1, a2, a3, a4) = (2, 1, 2, 1) obtained from

(1, 1, 1) by applying one operation (1.2). Choosing the solutions with the same ini-
tial conditions as above, one obtains the following antiperiodic quadrilateral in R

2:
{(1, 0), (0, 1), (−1, 2), (−1, 1)}.

2©

3© 1©

4© 0 0©
whose index is 1

2 .

5.3 The index of a solution

Proposition 5.5 For a solution of Problem I or II obtained from (1.4) by a sequence of S
operations (1.2) and R operations (1.3), the index of the corresponding broken line is equal
to 1

2 (R + 1).

Proof We need to show that the operations of the first type applied to solution of Prob-
lems I and II do not change the index of the corresponding broken line, while the opera-
tions of the second type increase this index by 1

2 .
An operation (1.2) adds one additional point,Vi +Vi+1, between the pointsVi andVi+1

in the sequence of points (Vi)i∈Z. The resulting sequence is (. . . , Vi, Vi + Vi+1, Vi+1, . . .),
which has the same index as the initial one.
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An easy computation shows that the operation (1.3) transforms the sequence of points
(Vi)i∈Z as follows:

(. . . , Vi−1, Vi, Vi+1, . . .) �→ (. . . , Vi−1, Vi, a′
iVi − Vi−1, (a′

i − 1)Vi − Vi−1, −Vi,−Vi+1, . . .).

Indeed, the sequence on the right-hand side is a solution of the Eq. (1.6) with coefficients

(a1, . . . , a′
i, 1, 1, a

′′
i , . . . , an).

Therefore, the operation (1.3) rotates the picture by 180◦ and thus increases the index
by 1

2 .

5.4 Non-osculating solutions and triangulations

Similarly to the classical Sturm theory of linear differential and difference equations, it is
natural to introduce the following notion.

Definition 5.6 Asolution of Problem IIwhose index is equal to 1
2 is callednon-osculating.

In other words, a solution of Problem II is non-osculating the number R of surgery
operations (1.3) needed to obtain this solution from the elementary solution (a1, a2, a3) =
(1, 1, 1) equals zero. Note that solutions of Problem I cannot be non-osculating because R
is odd in this case.
The class of non-osculating solutions of Problem II is precisely the totally positive

solutions of Conway and Coxeter (see “Appendix” section below). Indeed, if the number R
equals zero, then the 3d-dissection is a triangulation, cf. Proposition 3.1.
Similarly, one can define the class of non-osculating solutions of Problem III as that cor-

responding to symmetric triangulations of a 2n-gon. Again, the non-osculating property
is equivalent to that of total positivity.

6 An application: oscillating tame friezes
We briefly introduce the notion of tame “oscillating” Coxeter friezes. We show that this
notion is equivalent to solutions of Problem II. Theorems 1 and 2 then provide a classi-
fication of tame oscillating friezes. It is easy to see that oscillating Coxeter friezes satisfy
the main properties of the classical friezes, such as Coxeter glide symmetry.

6.1 Classical Coxeter friezes

Coxeter frieze [8] is an array of (n − 1) infinite rows of positive integers, with the first and
the last rows consisting of 1’s. Consecutive rows are shifted, and the so-called Coxeter
unimodular rule:

b
a d
c

, ad − bc = 1,

is satisfied for every elementary 2 × 2 “diamond.’
The Conway–Coxeter theorem [7] provides a classification of Coxeter friezes. Every

frieze corresponds to a triangulated n-gon, the rows 2 and n − 2 being the quiddity of a
triangulation; see Definition 1.1.
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Example 6.1 For example, the frieze

· · · 1 1 1 1 1
1 3 1 2 2 · · ·

· · · 2 2 1 3 1
1 1 1 1 1 · · ·

is the unique (up to a cyclic permutation) Coxeter frieze for n = 5. It corresponds to the
quiddity (a1, a2, a3, a4 , a5) = (1, 3, 1, 2, 2).

We refer to [19] for a survey on friezes and their connection to various topics.

6.2 Tameness

Let us relax the positivity assumption. Then, frieze patterns may become undetermined,
as discussed in [9], or very “wild,’ and the classification of such friezes is out of reach;
cf. [10]. An important property that we keep is that of tameness, first introduced in [4].

Definition 6.2 A frieze is tame if the determinant of every elementary 3 × 3-diamond
vanishes.

Remark 6.3 Note that every classical Coxeter frieze is tame. This follows easily from the
positivity assumption.

6.3 Friezes corresponding to solutions of Problems II and III

It turns out that solutions of Problems II and III precisely correspond to tame friezes with
(ai)i∈Z in the 2nd row. More precisely, we have the following

Proposition 6.4 There is a one-to-one correspondence between

(i) Solutions of Problem II and tame friezes with the 2nd row all positive integers;
(ii) Solutions of Problem III and tame friezes with even n and the 2nd row of positive

integers which are invariant under reflection in the middle row.

Proof The following fact was noticed in [7] for classical Coxeter friezes, and proved in [20]
for tame friezes.

Lemma 6.5 Every diagonal of a tame frieze is a solution of the Eq. (1.6) with coefficients
(ai)i∈Z in the 2nd row of the frieze.

Part (i) readily follows from the lemma, while Part (ii) is then a consequence of Coxeter
glide symmetry. ��

Example 6.6 The solution of Problem III with (a1, a2, a3, a4 , a5) = (1, 1, 2, 1, 1) generates
the following tame frieze with n = 10:
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· · · 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 1 1 1 1 · · ·

· · · 1 0 0 0 1 1 0 0 0 1
0 −1 −1 −1 −1 0 −1 −1 −1 −1 · · ·

· · · −1 −2 −1 −2 −1 −1 −2 −1 −2 −1
0 −1 −1 −1 −1 0 −1 −1 −1 −1 · · ·

· · · 1 0 0 0 1 1 0 0 0 1
2 1 1 1 1 2 1 1 1 1 · · ·

· · · 1 1 1 1 1 1 1 1 1 1

Every row is 5-periodic, and the frieze is symmetric under the reflection.

Remark 6.7 (a) The condition of total positivity for a solution (a1, . . . , an) of one of the
Problems I–III is precisely the condition that every entry of the frieze pattern with
quiddity (a1, . . . , an) is positive. This conditionwas introduced byCoxeter (see [7,8]),
and it is usually assumed in the literature on friezes; see [19]. We will discuss the
condition of total positivity in more details in “Appendix” section.

(b) A frieze pattern can be viewed as the “matrix” of a Sturm–Liouville operator (1.6)
acting on the infinite-dimensional space of sequences of numbers. This point of view
relates friezes to many different areas of mathematics. In particular, it allows one
to apply the tools of linear algebra; see [20], and is useful for the spectral theory of
linear difference operators; see [18].

7 Toward 3d-dissections of elements of PSL(2,Z)
In this section, we work with the group PSL(2,Z) = SL(2,Z)/ 〈±Id〉, called the modular
group. Our goal is to define the notions of quiddity and 3d-dissection associated with an
element of PSL(2,Z). The main statement of this section is formulated as conjecture, we
hope to develop the subject elsewhere.
The notions of quiddity and of 3d-dissection of an element of PSL(2,Z) deserve a

further study, and need to be better understood. In particular, it would be interesting
to understand their relations with the Farey graph and the hyperbolic plane. This could
eventually provide a proof of the conjecture.

7.1 The generators of PSL(2,Z)

It is a classical fact that the group PSL(2,Z) can be generated by two elements, say S and
L, satisfying

S2 = 1, L3 = 1,

and with no other relations. More formally, PSL(2,Z) is isomorphic to the free product of
two cyclic groups Z/2Z ∗ Z/3Z.
A possible choice of the generators is given by the following two matrices that, abusing

the notation, will also be denoted by S and L:

S =
(

0 1

−1 0

)
, L =

(
1 −1

1 0

)
.

These are generators of SL(2,Z), and of PSL(2,Z), modulo the center. The matrices S
and L are a square root and a cubic root of −Id, respectively.
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Another choice of generators which is often used is S and T := LS, so that

T =
(
1 1

0 1

)

the “transvection matrix.’ Note, however, that S and T are not free generators.

7.2 Reduced positive decomposition

Every element of SL(2,Z) can be written in the form (1.1), for some n-tuple of positive
integers (a1, . . . , an). This follows from the simple observation (already mentioned in the
introduction) that S = M5(1, 1, 2, 1, 1), see (1.5), while the second generator L of SL(2,Z)
is already in this form.
Furthermore, for an element of PSL(2,Z) one can choose a canonical, or reduced pre-

sentation in this form.

Definition 7.1 An n-tuple of positive integers (a1, . . . , an) is called reduced if it does
not contain subsequences ai, 1 , ai+2 with ai, ai+2 > 1, and ai, 1, 1 , ai+3 with arbitrary
ai, ai+3.

Every n-tuple can be brought into reduced form by a sequence of operations inverse to
the surgery operations (1.2) and (1.3). The matrixMn(a1, . . . , an) can only change its sign
under these operations. A reduced n-tuple can only have one or two 1’s in the beginning
or in the end.
We omit here a straightforward but tedious proof of the following uniqueness statement:

for every element A ∈ SL(2,Z), there exists a unique reduced n-tuple of positive integers
(a1, . . . , an) such that A = Mn(a1, . . . , an). Roughly speaking, this uniqueness means that
the operations (1.2) and (1.3) commute.

7.3 The quiddity and 3d-dissection of an element A ∈ PSL(2,Z)

Given an element A ∈ PSL(2,Z), we suggest the following construction.
Writing A and A−1 in the reduced form (1.1)

A = Mk (a1, . . . , ak ), A−1 = M�(a′
1, . . . , a

′
�),

one obtains a (k + �)-tuple of positive integers (a1, . . . , ak , a′
1, . . . , a

′
�), that we call the

quiddity of A.
Furthermore, taking into account the fact that

Mk+�(a1, . . . , ak , a′
1, . . . , a

′
�) = Mk (a1, . . . , ak )M�(a′

1, . . . , a
′
�) = ± Id,

by Theorem 1, this is a quiddity of some 3d-dissection.

Conjecture 7.2 Every element PSL(2,Z) corresponds to a unique 3d-dissection.

Recall that a quiddity does not necessarily determine a 3d-dissection (cf. Sect. 3.3).
The above conjecture means that this non-uniqueness phenomenon never occurs for
3d-dissections associated to elements of PSL(2,Z).
A consequence of the above conjecture is that very element PSL(2,Z) has some index,

or “rotation number,’ see Sect. 5.

7.4 Examples

Let us give a few examples.
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(a) As follows from (1.5), the matrix S corresponds to the quiddity of the hexagonal
dissection of a decagon:

2
1 1

1 1

1 1

1 1
2

The index is 3
2 .

(b) For the matrix T one has T = M3(2, 1, 1) (up to a sign) and T−1 = M4(1, 1, 2, 1).
This leads to the dissection of a heptagon:

1
2 2

1 1

1 1

The index is 1.
(c) Consider the following elements

A =
(
2 1

1 1

)
, B =

(
5 2

2 1

)

known as Cohn matrices. These matrices play an important role in the theory of Markov
numbers; see [1]. One has the following presentations:

A = M4(2, 2, 1, 1), B = M5(3, 2, 2, 1, 1), A−1 = M4(1, 1, 3, 1),

B−1 = M5(1, 1, 4, 2, 1).

The corresponding quiddities are those of the dissected octagon and decagon:

2 1

2 3

1 1

1 1

4
2 1

1 1

3 1

2 1
2

The index of both elements, A and B, is 1.
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Appendix: Conway–Coxeter quiddities and Farey sequences
This section is an overview and does not contain new results. We describe the Conway–
Coxeter theorem, formulated in terms of matrices Mn(a1, . . . , an), and a similar result
in the case of Problem III, obtained in [6]. We also briefly discuss the relation to Farey
sequences.
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In the seminal paper [7], Conway and Coxeter classified solutions of Problem II2 that
satisfy a certain condition of total positivity. These are precisely the solutions obtained
from the initial solution (a1, a2, a3) = (1, 1, 1) by a sequence of operations (1.2). Their
classification of totally positive solutions beautifully relates Problem II to such classical
subjects as triangulations of n-gons. Furthermore, the close relation of the topic to Farey
sequences was already mentioned in [8]. It turns out that the Conway–Coxeter theorem
implies some results of [14] about the index of a Farey sequence.

Total positivity

The class of totally positive solutions of Problem II can be defined in several equiva-
lent ways. Coxeter [8] (and Conway and Coxeter [7]) assumed that all the entries of the
corresponding frieze are positive.
Another simple definition is based on the properties of solutions of the Sturm–Liouville

equation.

Definition 7.3 A solution (a1, . . . , an) of Problem II is called totally positive if there exists
a solution (Vi)i∈Z of the Eq. (1.6) that does not change its sign on the interval [1, . . . , n],
i.e., the sequence of n numbers (V1, V2, . . . , Vn) is either positive, or negative.

In the context of Sturm oscillation theory, this case is often called “non-oscillating,’ or
“disconjugate.’ The index of the corresponding broken line is equal to 1

2 , see Sect. 5.

Remark 7.4 Note that since Mn(a1, . . . , an) = −Id, every solution is n-antiperiodic, so
that it must change sign on the interval [1, n + 1].

Let us give an equivalent combinatorial definition. Consider the following tridiagonal
i × i-determinant

Ki(a1, . . . , ai) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1

1 a2 1
. . . . . . . . .

1 ai−1 1

1 ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This polynomial is nothing but the celebrated continuant, already known by Euler, and
considered by many authors. It was proved by Coxeter [8] that the entries or a frieze
pattern can be calculated as continuants of the entries of the second row.
It is also well known, see, e.g., [4] (and can be easily checked directly), that the entries

of the 2 × 2 matrix (1.1) can be explicitly calculated in terms of these determinants as
follows:

Mn(a1, . . . , an) =
⎛
⎝ Kn(a1, . . . , an) −Kn−1(a2, . . . , an)

Kn−1(a1, . . . , an−1) −Kn−2(a2, . . . , an−1)

⎞
⎠ .

2Conway and Coxeter worked with so-called frieze patterns (see Sect. 6), but the equivalence of their result to the
classification of totally positive solutions of Problem II is a simple observation; see [4,20].
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The conditionMn(a1, . . . , an) = −Id implies that

Kn(ai, . . . , ai+n−1) = −1,

Kn−1(ai, . . . , ai+n−2) = 0,

Kn−2(ai, . . . , ai+n−3) = 1,

for all i.
The following definition is equivalent to Definition 7.3.

Definition 7.5 A solution (a1, . . . , an) of Problem II is totally positive if

Kj+1(ai, . . . , ai+j) > 0

for all j ≤ n − 3 and all i. Note that we use the cyclic ordering of the ai.

Triangulated n-gons

The Conway–Coxeter result states that totally positive solutions of Problem II are in
one-to-one correspondence with triangulations of n-gons.
Given a triangulation of an n-gon, let ai be the number of triangles adjacent to the ith

vertex. This yields an n-tuple of positive integers, (a1, . . . , an). Conway and Coxeter called
an n-tuple obtained from such a triangulation a quiddity.

Theorem (see [7]). Any quiddity of a triangulation is a totally positive solution of Prob-
lem II, and every totally positive solution of Problem II arises in this way.

A direct proof of the Conway–Coxeter theorem in terms of 2 × 2-matrices is given
in [4,11]. For a simple direct proof, see also [16].

Example 7.6 For n = 5, the triangulation of the pentagon

3
1 1

2 2

generates a solution (a1, a2, a3, a4 , a5) = (1, 3, 1, 2, 2) of Problem II. All other solutions for
n = 5 are obtained by cyclic permutations of this one.

Gluing triangles

Obviously, every triangulation of an n-gon can be obtained from a triangle by adding new
exterior triangles.

Example 7.7 Gluing a triangle to the above triangulated pentagon

3
1 11

2 21 1


 3
1 2

2 1,
3

one obtains the solution (1, 3, 2, 1, 3, 2) = (1, 3, 1 + 1, 1, 2+ 1, 2) of Problem II, for n = 6.
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Fig. 1 The Farey sequence of order 5 and the triangulated hendecagon

An operation (1.2) applied to a quiddity consists in gluing a triangle to a triangulated n-
gon, so that the Conway–Coxeter theorem implies the following statement (see also [11],
Theorem 5.5).

Corollary 7.8 Every totally positive solution of Problem II can be obtained from the initial
solution (a1, a2, a3) = (1, 1, 1) by a sequence of operations (1.2). Conversely, every sequence
of operations (1.2) applied to this initial solution is a totally positive solution of Problem II.

For a clear and detailed discussion; see [4].

Indices of Farey sequences as Conway–Coxeter quiddities

Relation to Farey sequences and negative continued fractions was already mentioned by
Coxeter [8] (see also [22]).
Rational numbers in [0, 1] whose denominator does not exceed N written in a form of

irreducible fractions form the Farey sequence of orderN . Elements of the Farey sequence,
v1 = a1

b1 and v2 = a2
b2 , are joined by an edge if and only if

|a1b2 − a2b1| = 1.

This leads to the classical notion of Farey graph. The Farey graph is often embedded into
the hyperbolic plane, the edges being realized as geodesics joining rational points on the
ideal boundary.
The main properties of Farey sequences can be found in [15]. A simple but important

property is that every Farey sequence forms a triangulated polygon in the Farey graph. A
Conway–Coxeter quiddity is then precisely the index of a Farey sequence, defined in [14].
The Conway–Coxeter theorem implies the following.

Corollary 7.9 A solution (a1, . . . , an) of Problem II is totally positive if and only if

a1 + a2 + · · · + an = 3n − 6.

Indeed, the total number of triangles in a triangulation is n − 2, and each triangle has
three angles that contribute to a quiddity.

Remark 7.10 The above formula is equivalent to Theorem 1 of [14]. Moreover, it holds
not only for the complete Farey sequence, but also for an arbitrary path in the Farey graph.
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Consider the Farey sequence of order 5 presented in Fig. 1. It has many different shorter
paths, for instance,

{ 1
1 ,

2
3 ,

3
5 ,

1
2 ,

1
3 ,

0
1
}
.

Totally positive solutions of Problem III

A solution (a1, . . . , an) of Problem III is totally positive if its double (a1, . . . , an, a1, . . . , an)
is a totally positive solution of Problem II. Every totally positive solution can be obtained
from one of the solutions (a1, a2) = (1, 2), or (2, 1) by a sequence of operations (1.2).
The Conway–Coxeter theorem implies that there is a one-to-one correspondence

between totally positive solutions of Problem III and centrally symmetric triangulations
of 2n-gons; see also [6].

Example 7.11 There exist 70 different centrally symmetric triangulations of the decagon,
for instance

5
1 2

2 2

2 2

2 1
5

4
1 3

3 1

1 3

3 1
4

4
1 2

4 1

1 4

2 1
4

Thecorresponding sequences (a1, a2, a3, a4 , a5) = (5, 2, 2, 2, 1), (4, 3, 1, 3, 1), (4, 2, 1, 4, 1), . . .
are totally positive solutions of Problem III.

The total number of totally positive solutions of Problem III is given by the central
binomial coefficient

(2n
n
) = 1, 2, 6, 20, 70, 252, 924, . . .
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