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DISSECTIONS OF POLYGONS
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Abstract. We characterize sequences of positive integers (a1, a2, . . . , an) for which the 2 × 2 matrix(
an −1

1 0

)(
an−1 −1

1 0

)
· · ·
(

a1 −1

1 0

)
is either the identity matrix Id, its negative −Id, or

square root of −Id. This extends a theorem of Conway and Coxeter that classifies such solutions subject

to a total positivity restriction.

1. Introduction and main results

Let Mn(a1, . . . , an) ∈ SL(2,Z) be the matrix defined by the product

(1.1) Mn(a1, . . . , an) :=

(
an −1

1 0

)(
an−1 −1

1 0

)
· · ·

(
a1 −1

1 0

)
,

where (a1, a2, . . . , an) are positive integers. The goal of this paper is to describe all solutions of the
following three equations

Mn(a1, . . . , an) = Id, (Problem I)

Mn(a1, . . . , an) = −Id, (Problem II)

Mn(a1, . . . , an)2 = −Id. (Problem III)

Problem II, with a certain total positivity restriction, was studied in [7, 6] under the name of “frieze
patterns”. The theorem of Conway and Coxeter [6] establishes a one-to-one correspondence between
totally positive solutions of Problem II and triangulations of n-gons. Note also that Coxeter implicitly
formulated Problem II in full generality, when he considered frieze patterns with zero and negative entries;
see [8].

The following observations are obvious.
(a) Cyclic invariance: if (a1, a2 . . . , an) is a solution of one of the above problems, then (a2, . . . , an, a1)

is also a solution of the same problem. It is thus often convenient to consider n-periodic infinite sequences
(ai)i∈Z with the cyclic order convention ai+n = ai.

(b) The “doubling” (a1, . . . , an, a1, . . . , an) of a solution of Problem II is a solution of Problem I, and
the “doubling” of a solution of Problem III is a solution of Problem II.

A particular feature of Problem III (distinguishing it from Problems I and II) is that it is equivalent
to a single Diophantine equation

tr Mn(a1, . . . , an) = 0.

This equation was considered in [5], where the totally positive solutions were classified. For more details,
see Section 4.

It turns out that the solutions of Problems I-III can be described combinatorially.

Definition 1.1. We call a 3d-dissection a partition of a convex n-gon into sub-polygons by means of
pairwise non-crossing diagonals, such that the number of vertices of every sub-polygon is a multiple of 3.
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In other words, a 3d-dissection splits an n-gon into triangles, hexagons, nonagons, dodecagons, etc.
Classical triangulations are a very particular case of a 3d-dissection.

The following statement, proved in Section 3, is our main result.

Theorem 1. (i) There is a one-to-one correspondence between the union of the sets of solutions of
Problems I and II and the set of 3d-dissections of n-gons.

(i) There is a one-to-one correspondence between the set of solutions of Problem III and the set of
centrally symmetric 3d-dissections of 2n-gons.

In order to explain how to construct a solution of Problems I-III starting from 3d-dissections we give
here a simple example.

Example 1.2. Consider the following dissection of a tetradecagon (n = 14) into 4 triangles and 2
hexagons.

2
2 1

1 2

3 1

1 3

2 1

1 2
2

Label its vertices by integers. Every labeling integer counts the number of sub-polygons adjacent to the
chosen vertex. Reading these numbers anti-clockwise along the border of the tetradecagon, one obtains
a solution of Problem II (a1, . . . , a14) = (2, 2, 1, 3, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1). Furthermore, the half-sequence
(a1, . . . , a7) = (2, 2, 1, 3, 1, 2, 1) is a solution of Problem III, since the 3d-dissection is centrally symmetric.

Theorem 1 reduces the problem of enumeration of solutions of Problems I-III to counting the number
of 3d-dissections of an n-gon. This is similar to the Conway and Coxeter theorem that implies that
the totally positive solutions of Problem II are enumerated by triangulations of n-gons, so that the
total number of solutions is given by the Catalan numbers. We refer to [12] for a general theorem on
enumeration of polygon dissections.

We will also give an inductive procedure of construction of all the solutions of Problems I-III. Consider
the following two families of “local surgery” operations on solutions of Problems I-III.

(a) The operations of the first type insert 1 into the sequence (a1, a2, . . . , an), increasing the two
neighboring entries by 1:

(1.2) (a1, . . . , ai, ai+1, . . . , an) 7→ (a1, . . . , ai + 1, 1, ai+1 + 1, . . . , an).

Within the cyclic ordering of ai, the operation is defined for all 1 ≤ i ≤ n. The operations (1.2)
preserve the set of solutions of each of the above problems.

(b) The operations of the second type break one entry, ai, replacing it by a′i, a
′′
i ∈ Z>0 such that

a′i + a′′i = ai + 1,

and insert two consecutive 1’s between them:

(1.3) (a1, . . . , ai, . . . , an) 7→ (a1, . . . , a
′
i, 1, 1, a′′i , . . . , an).

The operations (1.3) exchange solutions of Problems I and II, and preserve the set of solutions
of Problem III.
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The crucial difference between these two classes of operations is that every operation (1.2) increases the
number of sub-polygons of a 3d-dissection by 1, while an operation (1.3) keeps this number unchanged.
Indeed, an operation (1.2) consists in a gluing an extra “exterior” triangle, while an operation (1.3) selects
one sub-polygon and increases the number of its vertices by 3. For more details, see Section 3. Note
also that for a given n, there are exactly n different operations of type (1.2), while the total number of
different operations of type (1.3) is equal to a1 + · · ·+ an. Every operation (1.2) transforms n into n+ 1,
while every operation (1.3) transforms n into n + 3.

The following statement, proved in Section 2, is an “algorithmic version” of Theorem 1.

Theorem 2. (i) If n = 2, then Problem III has exactly two solutions:

(1.4) (a1, a2) = (1, 2), or (2, 1),

and every solution of Problem III can be obtained from (1.4) by a sequence of operations (1.2) and (1.3).
(ii) If n = 3, then Problem II has a unique solution:

(1.5) (a1, a2, a3) = (1, 1, 1),

and every solution of Problem I (resp. II) can be obtained from (1.5) by a sequence of operations (1.2)
and (1.3), such that the total number of operations (1.3) is odd (resp. even).

Note that the operations (1.2) are very well known. They were used by Conway and Coxeter [6]; see
also [10, 3] and many other sources. In particular, the totally positive solutions of Problem II are precisely
the solutions obtained by a sequence of operations (1.2); see Section 5. The operations (1.3) seem to be
new. They change the combinatorial nature of solutions (from triangulations to 3d-dissections), they also
have a geometric meaning in terms of the homotopy class of a curve on the projective line; see Section 6.

The following topics are related to Problems I-III, and motivated our study.

a) Combinatorics of Coxeter’s frieze patterns [7, 6]. Note that classical Farey sequences can be
understood as very particular cases of Coxeter friezes; see [7] (and also [20]). In particular, the
index of a Farey sequence defined in [13], is a totally positive solution of Problem II. Coxeter’s
friezes became an active area of research; see [18] and references therein. Although this is not the
main subject of the paper, we outline in Section 7 the class of Coxeter’s friezes corresponding to
arbitrary solutions of Problems II and III.

b) The theory of negative continued fractions

[a1, a2, . . . , an] = a1 −
1

a2 −
1

. . . −
1

an

is relevant for the subject of this paper, although in this theory one usually considers ai ≥ 2
and the matrix Mn(a1, . . . , an) is hyperbolic. Some ideas of the theory have found application to
Farey sequences; see [22, 13].

c) The matrix Mn(a1, . . . , an) is the monodromy matrix of the discrete Sturm-Liouville equation

(1.6) Vi−1 − aiVi + Vi+1 = 0.

The condition Mn(a1, . . . , an) = Id (resp. −Id) means that every solution of (1.6) is periodic
(resp. antiperiodic): Vi+n = Vi (resp. −Vi) for all i. Sturm oscillation theory (see, e.g., [21]), and
in particular the notion of rotation number [11], can then be applied to give a geometric invariant
separating the classes of solutions of Problems I-III, counting the number of operations (1.3); see
Section 6.



4 VALENTIN OVSIENKO

2. Proof of Theorem 2

In this section we prove Theorem 2 and give some of its simplest corollaries.

2.1. Induction basis. Let us first consider the simplest cases.
a) If n = 2, then the matrix M2(a1, a2) is as follows:(

a2 −1

1 0

)(
a1 −1

1 0

)
=

(
a1a2 − 1 −a2

a1 −1

)
,

with a1, a2 > 0. Since this matrix cannot be ±Id, Problems I and II have no solutions.
Consider Problem III. The condition M2(a1, a2)2 = −Id implies that the trace of this matrix vanishes,

so that the coefficients a1, a2 must satisfy the equation a1a2 = 2. The only positive integers satisfying
this equation are (a1, a2) = (2, 1) and (1, 2).

b) Consider the case n = 3 and assume that the sequence (a1, a2, a3) contains two consecutive 1’s. Set
(a1, a2, a3) = (a, 1, 1). The matrix M3(a1, a2, a3) is then given by(

a −1

1 0

)(
1 −1

1 0

)(
1 −1

1 0

)
=

(
−1 1− a

0 −1

)
.

Hence Problem II has one solution (1, 1, 1), corresponding to a = 1, while Problems I and III have no
solutions.

2.2. The surgery operations. Let us analyze how the operations (1.2) and (1.3) act on the matrix (1.1).
This is just an elementary computation.

An operation (1.2) replaces the product of two elementary matrices(
ai+1 −1

1 0

)(
ai −1

1 0

)
in the expression for Mn(a1, . . . , an) by(

ai+1 + 1 −1

1 0

)(
1 −1

1 0

)(
ai + 1 −1

1 0

)
=

(
aiai+1 − 1 −ai

ai+1 −1

)

=

(
ai+1 −1

1 0

)(
ai −1

1 0

)
.

Therefore, an operation (1.2) does not change the matrix:

Mn+1(a1, . . . , ai + 1, 1 , ai+1 + 1, . . . , an) = Mn(a1, . . . , an).

It follows that the operations (1.2) preserve the sets of solutions of Problems I-III.
Consider now an operation (1.3). Since(

a′′i −1

1 0

)(
1 −1

1 0

)(
1 −1

1 0

)(
a′i −1

1 0

)
=

(
1− a′i − a′′i 1

−1 0

)
= −

(
ai −1

1 0

)
,

the matrix Mn(a1, . . . , an) changes its sign. Hence the operations (1.3) preserve the set of solutions of
Problem III. Furthermore, if the number of the operations (1.3) is even, then the sequence of operations
also preserves the set of solutions of Problems I and II.
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2.3. Induction step. We need the following lemma, which was essentially proved in [6].

Lemma 2.1. Given a solution (a1, . . . , an) of Problem I, II, or III, there exists at least one value of
1 ≤ i ≤ n, such that ai = 1.

Proof. Assume that ai ≥ 2 for all i, and consider the solution (Vi)i∈Z of the equation (1.6) with initial
conditions (V0, V1) = (0, 1). Since Vi+1 = aiVi − Vi−1, we see by induction that Vi+1 > Vi for all i.
Therefore, the solution (Vi)i∈Z grows and cannot be periodic.

The matrix Mn(a1, . . . , an) is the monodromy matrix of (1.6). More precisely, let (Vi)i∈Z be a solution
of the equation (1.6). Then for the vector (Vi+1, Vi)

t, we have[
Vi+1

Vi

]
=

(
ai −1

1 0

)[
Vi

Vi−1

]
, . . . ,

[
Vi+n

Vi+n−1

]
= Mn(a1, . . . , an)

[
Vi

Vi−1

]
.

Suppose first that Mn(a1, . . . , an) = Id. Then every solution of (1.6) must be periodic, which is a
contradiction.

If now Mn(a1, . . . , an) = −Id or Mn(a1, . . . , an)2 = −Id, then we can use the doubling argument to
conclude that every solution of (1.6) must be 2n-periodic or 4n-periodic, respectively. �

We are ready to prove that every solution of Problems I-III can be obtained from the elementary
solutions (1.5) and (1.4) by a sequence of the operations (1.2) and (1.3). Given a solution (a1, . . . , an),
by Lemma 2.1 there exists at least one coefficient ai which is equal to 1. There are then two possibilities:
(a) both ai−1, ai+1 ≥ 2; and (b) there are two consecutive 1’s, say ai = ai+1 = 1, i.e., the chosen solution
has the following “fragment”: (. . . , ai−1, 1, 1, ai+2, . . .).

In the case (a), consider the (n− 1)-tuple

(a1, . . . , ai−2, ai−1 − 1, ai+1 − 1, ai+2, . . . , an).

Clearly, the solution (a1, . . . , an) can be obtained from this (n − 1)-tuple by an operation (1.2). In the
case (b), take the (n− 3)-tuple

(a1, . . . , ai−2, ai−1 + ai+2 − 1, ai+3, . . . , an).

The chosen solution is a then result of the operation (1.3) applied to the coefficient ai−1 + ai+2 − 1.
The above inverse operations (1.2) and (1.3) can always be applied, unless n = 2, or unless n = 3 and

there are at least two consecutive 1’s. Theorem 2 is proved. �

2.4. Simple corollaries. An immediate consequence of Theorem 2 is the following upper bound for the
coefficients.

Corollary 2.2. If (a1, a2, . . . , an) is a solution to one of Problems I, II, or III, then
(i) ai ≤ n− 5 (Problem I);
(ii) ai ≤ n− 2 (Problem II);
(iii) ai ≤ n (Problem III).

Proof. The operations (1.3) cannot increase the values of the coefficients ai, while the operations (1.2)
simultaneously increase n and two coefficients by 1. �

The next corollary gives expressions for the total sum of the coefficients.

Corollary 2.3. (i) If (a1, a2, . . . , an) is a solution of one of Problems I or II obtained from the initial
solution (a1, a2, a3) = (1, 1, 1) by applying a sequence of S operations (1.2) and R operations (1.3), then

(2.7)
a1 + a2 + · · ·+ an = 3S + 3R + 3

= 3n− 6R− 6.
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(ii) If (a1, a2, . . . , an) is a solution of Problem III obtained from one of the initial solutions (a1, a2) =
(2, 1) or (1, 2) by applying a sequence of S operations (1.2) and R operations (1.3), then

(2.8)
a1 + a2 + · · ·+ an = 3S + 3R + 3

= 3n− 6R− 3.

Proof. Both the operations (1.3) and (1.2) add 3 to the total sum of the coefficients. Furthermore, the
operations (1.2) (resp. (1.3)) increase n by 1 (resp. by 3). �

Note that the numbers S and R depend only on the solution (a1, a2, . . . , an) (and independent of the
choice of the sequence of operations producing the solution). The simplest case R = 0 is considered in
Section 5 below.

2.5. Solutions of Problem I for small n. Let us give several examples constructed using the inductive
procedure provided by Theorem 2. We start with the list of solutions of Problem I for n ≤ 8.

(a) Part (i) of Corollary 2.2 implies that Problem I has no solutions for n ≤ 5.
(b) For n = 6, Problem I has the unique solution (a1, a2, a3, a4, a5, a6) = (1, 1, 1, 1, 1, 1) obtained

from (1.5) by one operation (1.3).
(c) For n = 7, one has 7 different solutions:

(2.9) (a1, a2, a3, a4, a5, a6, a7) = (2, 1, 2, 1, 1, 1, 1)

and its cyclic permutations.
(d) For n = 8, one has 34 different solutions, namely

(2.10)
(a1, . . . , a8) = (3, 1, 1, 1, 1, 2, 2, 1), (3, 1, 2, 1, 1, 1, 2, 1), (2, 2, 1, 2, 1, 1, 2, 1), (2, 1, 2, 1, 2, 1, 2, 1),

and their reflections and cyclic permutations.

2.6. Solutions of Problem II for small n. Below is the list of solutions of Problem II for n ≤ 10.
(a) For n ≤ 8 all solutions of Problem II are given by Conway-Coxeter’s “quiddities”, and correspond

to triangulations of n-gons; see Section 5 below. The number of solutions for a given n is thus equal to
the Catalan number Cn−2, where Cn = 1

n+1

(
2n
n

)
.

(b) For n = 9, in addition to 429 Conway-Coxeter quiddities, there is one extra solution:

(2.11) (a1, . . . , a9) = (1, 1, 1, 1, 1, 1, 1, 1, 1).

(c) For n = 10, in addition to 1430 Conway-Coxeter quiddities, there are 15 solutions:

(2.12) (a1, . . . , a10) = (2, 1, 2, 1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 2, 1, 1, 1, 1),

and their cyclic permutations.

3. The combinatorial model: 3d-dissections

In this section we prove Theorem 1 deducing it from Theorem 2. Using the combinatorics of 3d-
dissections, we then obtain the formulas for the numbers of surgery operations for a given solution of
Problems I or II. Finally, we revisit the examples from Sections 2.5 and 2.6 and give their combinatorial
realizations.

3.1. Quiddity of a dissection. The correspondence between solutions of Problems I or II and 3d-
dissections is similar to the classical Conway and Coxeter construction [6] (see also Section 5).

Definition 3.1. The quiddity of a 3d-dissection of an n-gon is the n-tuple of numbers (a1, . . . , an) such
that ai is the number of sub-polygons adjacent to ith vertex of the n-gon.
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3.2. Proof of Theorem 1. Part (i). Consider a solution (a1, . . . , an) of Problem I or II. We want to
prove that there exists a 3d-dissection of an n-gon such that its quiddity is precisely the chosen solution.

We proceed by induction in n. By Theorem 2, the chosen solution can be obtained from the initial
solution (1.5) by a series of operations (1.2) and (1.3). Consider the solution (of length n − 1 or n − 3)
obtained by the same sequence but without the last operation. By induction assumption, this solution
corresponds to some 3d-dissection, say D, (of an (n − 1)-gon or an (n − 3)-gon). There are then two
possibilities.

(a) If the last operation in the series is that of type (1.2), then the solution corresponds to the
angulation D with extra exterior triangle glued to the edge (i, i + 1).

(b) Suppose that the last operation is that of type (1.3). Consider the new 3d-dissection obtained
from D by the following local surgery at vertex i, along a chosen sub-polygon:

i i′ i′′

1 1

that inserts two new vertices 1, 1 between two copies of the vertex i. This leads to a 3d-dissection of an
(n + 3)-gon which is exactly as in the right-hand-side of (1.3).

Conversely, given a 3d-dissection of an n-gon, we need to show that its quiddity is a solution of
Problem I or II. This follows from the obvious fact that any 3d-dissection of an n-gon by pairwise non-
crossing diagonals has an exterior sub-polygon. By “exterior” we mean a sub-polygon without diagonals
which is glued to the rest of the 3d-dissection along one edge

1 aj

1

1 ai
1 1

Such a 3d-dissection can be reduced by applying the inverse of one of the operations (1.2) or (1.3). We
then proceed by induction.

Part (i) of the theorem follows, the proof of Part (ii) is similar.

Theorem 1 is proved. �

Remark 3.2. Relationship between Problems I-III and combinatorics of dissections of n-gons is not
very surprising. Since the work of Conway and Coxeter triangulations of various geometric objects play
important role in the subject; see, e.g., [1, 2]. Higher angulations of n-gons have also been considered;
see [4, 16]. However, to the best of our knowledge, 3d-dissections have not been considered in the literature
on the subject.

3.3. Counting the surgery operations. Consider a solution of Problem I or II and the corresponding
3d-dissection. Denote by Nd is the number of 3d-gons in the 3d-dissection.

Proposition 3.3. Given a solution of Problem I or II constructed from (1.5) by a sequence of S opera-
tions (1.2) and R operations (1.3),
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(i) The number S counts the total number of sub-polygons except for the initial one:

(3.13) S =
∑

d≤[n
3 ]

Nd − 1.

(ii) The number of operations of the second type is the weighted sum

(3.14) R =
∑

d≤[n
3 ]

(d− 1)Nd.

In other words, to calculate R, one ignores the triangles, counts hexagons, counts nonagons 2 times,
dodecagons 3 times, etc.

Proof. An operation (1.2) consists in a gluing a triangle. It increases the total number of sub-polygons
by 1. This implies (3.13).

We have proved (see the proof of Theorem 1) that an operation (1.3) does not change the total
number of sub-polygons of a 3d-dissection, but adds 3 new vertices to one of the existing sub-polygons.
Hence (3.14). �

3.4. Examples. Let us give combinatorial entities of the examples from Section 2.
(a) Consider again the solutions of Problem I for small n; see Section 2.5. For n = 6 the unique

solution (a1, . . . , a6) = (1, . . . , 1) is given by the hexagon without interior diagonals.
For n = 7 the unique modulo cyclic permutations solution (2.9) corresponds to a triangle glued to an

hexagon

1
2 2

1 1

1 1

For n = 8 the solutions of Problem I correspond to dissections of the octagon into hexagon and two
triangles. There are exactly 4 such dissections (modulo reflections and rotations):

1 2

3 2

1 1

1 1

1 2

3 1

1 1

2 1

1 2

2 2

2 1

1 2

1 2

2 2

1 2

2 1

in full accordance with (2.10).
(b) Consider now the solutions of Problem II discussed in Section 2.6. For n = 9 the solution (2.11)

obviously corresponds to the nonagon with no dissection. For n = 10 there are two possibilities: a triangle
glued to a nonagon and two glued hexagons

2
1 1

2 1

1 1

1 1
1

2
1 1

1 1

1 1

1 1
2

This corresponds (modulo cyclic permutations) to the solutions (2.12).
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4. Problem III and the zero-trace equation

An elementary observation shows that Problem III is equivalent to a single Diophantine equation.
Theorems 1 and 2 imply that the number of solutions of this equation is finite and give an algorithm to
construct them all.

4.1. The “Rotundus” polynomial. The trace of the matrix (1.1), that we denote by Rn(a1, . . . , an),
is a beautiful cyclically invariant polynomial in a1, . . . , an. The first examples are:

R1(a) = a,

R2(a1, a2) = a1a2 − 2,

R3(a1, a2, a3) = a1a2a3 − a1 − a2 − a3,

R4(a1, a2, a3, a4) = a1a2a3a4 − a1a2 − a2a3 − a3a4 − a1a4 + 2,

R5(a1, a2, a3, a4, a5) = a1a2a3a4a5
−a1a2a3 − a2a3a4 − a3a4a5 − a1a4a5 − a1a2a5
+a1 + a2 + a3 + a4 + a5.

The polynomial Rn(a1, . . . , an) was called the “Rotundus” in [5], where it is proved that Rn(a1, . . . , an)
can also be calculated as the Pfaffian of a certain skew-symmetric matrix. Note that Rn(a1, . . . , an) is
the polynomial part of the rational function

a1a2 · · · an
(

1− 1

a1a2

)(
1− 1

a2a3

)
· · ·
(

1− 1

ana1

)
.

4.2. The “Rotundus equation”.

Proposition 4.1. Every solution of Problem III is a solution of the equation

(4.15) Rn(a1, . . . , an) = 0,

and vice-versa.

Proof. A trace zero element of SL(2,Z) has eigenvalues i and −i. This is equivalent to the fact that it
squares to −Id. �

Remark 4.2. Note also that every solution of Problem I or II satisfies the equation Rn(a1, . . . , an) = 2
or −2, respectively. However, the converse is false: a solution of one of these equations is not necessarily
a solution of Problem I or II. It is also easy to see that the equation Rn(a1, . . . , an) = ±2 has infinitely
many positive integer solutions for sufficiently large n. For instance, one has Rn(a, 1, 1) = −2 for any a.

4.3. The list of solutions of Problem III for small n. Let us give a complete list of solutions of
Problem III for n ≤ 6.

(a) For n = 2, 3, and 4, all the solutions are given by centrally symmetric triangulations of a quadri-
lateral (2), hexagon (6), and octagon (20), respectively. Note also that the cases n = 2 and 3 are
well-known.

(b) For n = 5, besides 70 solutions corresponding to centrally symmetric triangulations of the decagon
(see Example 5.9), one obtains 5 additional solutions: (a1, a2, a3, a4, a5) = (2, 1, 1, 1, 1) and its cyclic
permutations. These 5 new solutions are obtained from (1.4) by applying one operation (1.3).

(c) For n = 6, besides 252 solutions corresponding to centrally symmetric triangulations of the do-
decagon, one gets 26 additional solutions:

(a1, a2, a3, a4, a5, a6) = (3, 1, 2, 1, 1, 1), (2, 2, 1, 2, 1, 1), (2, 1, 2, 1, 2, 1),

their cyclic permutations and reflections.
We mention that the sequence 2, 6, 20, 75, 278, . . . corresponding to the total number of solutions of

Problem III is not in the OEIS.
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5. Conway-Coxeter quiddities and Farey sequences

In the seminal paper [6], Conway and Coxeter classified solutions of Problem II1 that satisfy a cer-
tain condition of total positivity. These are precisely the solutions obtained from the initial solution
(a1, a2, a3) = (1, 1, 1) by a sequence of operations (1.2). Their classification of totally positive solu-
tions beautifully relates Problem II to such classical subjects as triangulations of n-gons. Furthermore,
the close relation of the topic to Farey sequences was already mentioned in [7]. It turns out that the
Conway-Coxeter theorem implies some results of [13] about the index of a Farey sequence.

This section is an overview and does not contain new results. We describe the Conway-Coxeter
theorem, formulated in terms of matrices Mn(a1, . . . , an), and a similar result in the case of Problem III,
obtained in [5]. We also briefly discuss the relation to Farey sequences.

5.1. Total positivity. The class of totally positive solutions of Problem II can be defined in several
equivalent ways. The simplest definition is based on the properties of solutions of the Sturm-Liouville
equation.

Definition 5.1. A solution of Problem II is called totally positive if there exists a solution (Vi)i∈Z of the
equation (1.6) that does not change its sign on the interval [1, . . . , n], i.e., the sequence (V1, V2, . . . , Vn)
is positive or negative.

In the context of Sturm oscillation theory, this case should be called “non-oscillant”, or “non-osculating”.

Remark 5.2. Note that since M(a1, . . . , an) = −Id, every solution is n-anti-periodic, so that it must
change sign on the interval [1, n + 1].

Let us give an equivalent combinatorial definition. Consider the following tridiagonal i× i-determinant

K(a1, . . . , ai) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1

1 a2 1

. . .
. . .

. . .

1 ai−1 1

1 ai

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It is well-known (and can be easily checked directly) that the matrix (1.1) can be written in terms of
these determinants as follows:

M(a1, . . . , an) =

(
K(a1, . . . , an) −K(a2, . . . , an)

K(a1, . . . , an−1) −K(a2, . . . , an−1)

)
.

Definition 5.3. A solution (a1, . . . , an) of Problem II is totally positive if

K(ai, . . . , ai+j) > 0

for all j ≤ n− 2 and all i. Note that we use the cyclic ordering of the ai.

Remark 5.4. (a) The condition M(a1, . . . , an) = −Id implies that K(ai, . . . , ai+n−1) = 0, for all i.

1Conway and Coxeter worked with so-called frieze patterns (see Section 7 below), but the equivalence of their result to
the classification of solutions of Problem II is a simple observation; see [3, 19].
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5.2. Triangulated n-gons: “quiddities”. The Conway-Coxeter result states that totally positive so-
lutions of Problem II are in one-to-one correspondence with triangulations of n-gons.

Given a triangulation of an n-gon, let ai be the number of triangles adjacent to the ith vertex. This
yields an n-tuple of positive integers, (a1, . . . , an). Conway and Coxeter call an n-tuple obtained from
such a triangulation a quiddity.

Theorem. [6] Any quiddity is a totally positive solution of Problem II, and every totally positive solution
arises in this way.

A direct proof of the Conway-Coxeter theorem in terms of 2 × 2-matrices is given in [10, 3]. For a
simple proof, see also [15].

Example 5.5. For n = 5, the triangulation of the pentagon

3

1 1

2 2

generates a solution (a1, a2, a3, a4, a5) = (1, 3, 1, 2, 2) of Problem II. All other solutions for n = 5 are
obtained by cyclic permutations of this one.

5.3. Gluing triangles. Obviously, every triangulation of an n-gon can be obtained from a triangle by
adding new exterior triangles.

Example 5.6. Gluing a triangle to the above triangulated pentagon

3

1 11

2 21 1

' 3

1 2

2 1,

3

one obtains the solution (1, 3, 2, 1, 3, 2) = (1, 3, 1 + 1, 1, 2 + 1, 2) of Problem II, for n = 6.

An operation (1.2) applied to a quiddity consists in gluing a triangle to a triangulated n-gon, so that
the Conway-Coxeter theorem implies the following statement (see also [10], Theorem 5.5).

Corollary 5.7. Every totally positive solution of Problem II can be obtained from the initial solution
(a1, a2, a3) = (1, 1, 1) by a sequence of operations (1.2).

For a clear and detailed discussion; see [3].

5.4. Indices of Farey sequences as Conway-Coxeters quiddities. Relation to Farey sequences and
negative continued fractions was already mentioned by Coxeter [7] (see also [20]).

Rational numbers in [0, 1] whose denominator does not exceed N written in a form of irreducible
fractions, whose denominators do not exceed N form the Farey sequence of order N . Elements of the
Farey sequence form the Farey graph: two rationals, v1 = a1

b1
and v2 = a2

b2
, are joined by an edge if and

only if
|a1b2 − a2b1| = 1.

The Farey graph is often embedded into the hyperbolic plane, the edges being realized as geodesics joining
rational points on the ideal boundary.

The main properties of Farey sequences can be found in [14]. A simple but important property is that
every Farey sequence forms a triangulated polygon in the Farey graph. A Conway-Coxeters quiddity is
then precisely the index of a Farey sequence, defined in [13].
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Figure 1. The Farey sequence of order 5 and the triangulated hendecagon.

Remark 5.8. The Conway-Coxeter theorem implies that

a1 + a2 + · · ·+ an = 3n− 6.

Indeed, the total number of triangles in a triangulation is n− 2, and each triangle has three angles that
contribute to a quiddity. The above formula is equivalent to Theorem 1 of [13]. Moreover, it holds
not only for the complete Farey sequence, but also for an arbitrary path in the Farey graph. Consider
the Farey sequence of order 5 presented in Figure 1. It has many different shorter paths, for instance,{

1
1 ,

2
3 ,

3
5 ,

1
2 ,

1
3 ,

0
1

}
.

5.5. Totally positive solutions of Problem III. A solution (a1, . . . , an) of Problem III is totally
positive if its double (a1, . . . , an, a1, . . . , an) is a totally positive solution of Problem II. Every totally
positive solution can be obtained from one of the solutions (a1, a2) = (1, 2), or (2, 1) by a sequence of
operations (1.2).

The Conway-Coxeter theorem implies that there is a one-to-one correspondence between totally posi-
tive solutions of Problem III and centrally symmetric triangulations of 2n-gons; see [5].

Example 5.9. There exist 70 different centrally symmetric triangulations of the decagon, for instance

5
1 2

2 2

2 2

2 1
5

4
1 3

3 1

1 3

3 1
4

4
1 2

4 1

1 4

2 1
4

The corresponding sequences (a1, a2, a3, a4, a5) = (5, 2, 2, 2, 1), (4, 3, 1, 3, 1), (4, 2, 1, 4, 1), . . . are totally
positive solutions of Problem III.

The total number of totally positive solutions of Problem III is given by the central binomial coefficient(
2n
n

)
= 1, 2, 6, 20, 70, 252, 924, . . .

6. The rotation index

In this section we define a geometric invariant of solutions of Problem I, II, and III. It is given by the
index of a broken line in R2 (i.e., the homotopy class of an n-gon in the projective line), or equivalently
as the rotation number of the equation (1.6). This index actually counts the number of operations (1.3).
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6.1. The star-shaped broken line. Recall that the index of a smooth closed plane curve is the number
of rotations of its tangent vector. For a star-shaped curve, the index can be equivalently calculated as
the homotopy class of the projection of the curve to RP1.

Given a solution (a1, . . . , an) of Problem I, II, or III, let us construct a star-shaped (broken) line in R2.
Consider the corresponding discrete Sturm-Liouville equation

Vi+1 = aiVi − Vi−1,

where the set of coefficients ai is understood as an infinite n-periodic sequence (ai)i∈Z. Chose two linearly

independent solutions, V (1) = (V
(1)
i )i∈Z and V (2) = (V

(2)
i )i∈Z. One then has a sequence of points in R2:

Vi =
(
V

(1)
i , V

(2)
i

)
,

These points form a broken star-shaped line. Indeed, the determinant

W (V (1), V (2)) :=

∣∣∣∣∣ V
(1)
i+1 V

(1)
i

V
(2)
i+1 V

(2)
i

∣∣∣∣∣ ,
usually called the Wronski determinant, is constant, i.e., does not depend on i. Therefore, the sequence
of points (Vi)i∈Z in R2 always rotates around the origin in the same (positive or negative, depending on
the choice of the two solutions) direction. Note that a different choice of the solutions V (1) and V (2) gives
the same broken line, modulo a linear coordinate transformation in R2.

If Mn(a1, . . . , an) = Id (resp. −Id), then the broken line thus constructed is periodic, i.e., Vi+n = Vi

(resp. anti-periodic, Vi+n = −Vi). We will be interested in the index of this broken line.

Remark 6.1. Note that the index of an antiperiodic star-shaped broken line is a well-defined half-
integer. If Mn(a1, . . . , an)2 = −Id, then, using the doubling procedure, we can still define the index of
the corresponding star-shaped broken line as a multiple of 1

2 .

Example 6.2. (a) Consider the sequence (a1, . . . , a6) = (1, 1, 1, 1, 1, 1), which is the solution of Prob-
lem I obtained from (1, 1, 1) by applying one operation (1.3). Choosing the solutions with the ini-

tial conditions (V
(1)
0 , V

(1)
1 ) = (1, 0) and (V

(2)
0 , V

(2)
1 ) = (0, 1), one obtains the following hexagon in R2:

{(1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)}.

2○ 1○

OO

3○ 0 0○ //

4○ 5○

The index of this hexagon is 1.
(b) Consider the solution of Problem II (a1, a2, a3, a4) = (2, 1, 2, 1) obtained from (1, 1, 1) by applying

one operation (1.2). Choosing the solutions with the same initial conditions as above, one obtains the
following antiperiodic quadrelateral in R2: {(1, 0), (0, 1), (−1, 2), (−1, 1)}.



14 VALENTIN OVSIENKO

2○

3○ 1○

OO

4○ 0 0○ //

whose index is 1
2 .

6.2. The index.

Proposition 6.3. For a solution of Problem I or II obtained from (1.5) by a sequence of S operations (1.2)
and R operations (1.3), the index of the corresponding broken line is equal to 1

2 (R + 1).

Proof. We need to show that the operations of the first type applied to solution of Problems I and II do
not change the index of the corresponding broken line, while the operations of the second type increase
this index by 1

2 .
An operation (1.2) adds one additional point, Vi+Vi+1, between the points Vi and Vi+1 in the sequence

of points (Vi)i∈Z. The resulting sequence is (. . . , Vi, Vi +Vi+1, Vi+1, . . .), which has the same index as the
initial one.

An easy computation shows that the operation (1.3) transforms the sequence of points (Vi)i∈Z as
follows:

(. . . , Vi−1, Vi, Vi+1, . . .) 7→ (. . . , Vi−1, Vi, a
′
iVi − Vi−1, (a′i − 1)Vi − Vi−1, −Vi,−Vi+1, . . .).

Indeed, the sequence on the right-hand-side is a solution of the equation (1.6) with coefficients

(a1, . . . , a
′
i, 1, 1, a′′i , . . . , an).

Therefore, the operation (1.3) rotates the picture by 180◦ and increases the index by 1
2 . �

If, for a solution of Problem II, the index is equal to 1
2 , i.e., the number R of operations (1.3) equals

zero, then the solution is called non-osculating. The class of non-osculating solutions of Problem II is
precisely that of Conway and Coxeter, considered in Section 5. Similarly, the class of non-osculating
solutions of Problem III is that corresponding to symmetric triangulations of a 2n-gon. Solutions of
Problem I cannot be non-osculating because R is odd in this case.

7. Oscillating tame friezes

A frieze pattern can be viewed as a “matrix” of the Sturm-Liouville operator (1.6) acting on the
infinite-dimensional space of sequences of numbers. This point of view allows one to apply the tools of
linear algebra; see [19], and is useful for the spectral theory of linear difference operators; see [17].

We briefly introduce the notion of tame oscillating Coxeter friezes. We show that this notion is
equivalent to solutions of Problem II. Theorems 2 and 1 then provide a classification of tame oscillating
friezes. It is easy to see that oscillating Coxeter friezes satisfy the main properties of the classical friezes,
such as Coxeter’s glide symmetry.

7.1. Classical Coxeter friezes. Coxeter’s frieze [7] is an array of (n+ 1) infinite rows of integers, with
the first and the last rows consisting of 0’s, the second and nth rows of 1’s, and all the other entries are
positive integers. Consecutive rows are shifted, and the so-called Coxeter unimodular rule:

b
a d

c
, ad− bc = 1,

is satisfied for every elementary “diamond”.
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The Conway-Coxeter theorem [6] provides a classification of the Coxeter friezes. Every frieze corre-
sponds to a triangulated n-gon, the rows 3 and n− 1 being the Conway-Coxeter quiddity.

Example 7.1. For example, the frieze (here and below we omit the first and the last rows of 0’s):

· · · 1 1 1 1 1

1 3 1 2 2 · · ·
· · · 2 2 1 3 1

1 1 1 1 1 · · ·
is the unique (up to a cyclic permutation) Coxeter frieze for n = 5. It corresponds to the quiddity
(a1, a2, a3, a4, a5) = (1, 3, 1, 2, 2).

Therefore, there is one-to-one correspondence between Coxeter friezes and totally positive solutions of
Problem II; see Section 5.

We refer to [18] for a survey on friezes and their connection to various topics.

7.2. Tameness. Let us relax the positivity assumption. Then frieze patterns may become very “wild”,
and the classification of such friezes is out of reach; cf. [9]. An important property that we keep is that
of tameness, first introduced in [3].

Definition 7.2. A frieze is tame if every 3× 3-diamond vanishes.

Remark 7.3. Note that every classical Coxeter frieze is tame. This follows easily from the positivity
assumption.

Solutions of Problems II and III correspond to tame friezes with (ai)i∈Z in the 3rd row. More precisely,
we have the following

Proposition 7.4. There is a one-to-one correspondence between
(i) Solutions of Problem II and tame friezes with the 3rd row all positive integers;
(ii) Solutions of Problem III and tame friezes with even n and the 3rd row of positive integers which

are invariant under reflection in the middle row.

Proof. The following fact was noticed in [6] for classical Coxeter friezes, and proved in [19] for tame
friezes.

Lemma 7.5. Every diagonal of a tame frieze is a solution of the equation (1.6) with coefficients (ai)i∈Z
in the 3rd row of the frieze.

Part (i) readily follows from the lemma, while Part (ii) is then a consequence of Coxeter’s glide
symmetry. �

Example 7.6. The solution of Problem III with (a1, a2, a3, a4, a5) = (2, 1, 1, 1, 1) generates the following
tame frieze with n = 10:

· · · 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 1 1 1 1 · · ·
· · · 1 0 0 0 1 1 0 0 0 1

0 −1 −1 −1 −1 0 −1 −1 −1 −1 · · ·
· · · −1 −2 −1 −2 −1 −1 −2 −1 −2 −1

0 −1 −1 −1 −1 0 −1 −1 −1 −1 · · ·
· · · 1 0 0 0 1 1 0 0 0 1

2 1 1 1 1 2 1 1 1 1 · · ·
· · · 1 1 1 1 1 1 1 1 1 1
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Every row is 5-periodic, and the frieze is symmetric under the reflection.

Acknowledgements. I am grateful to Charles Conley, Sophie Morier-Genoud and Sergei Tabachnikov
for multiple stimulating and enlightening discussions.
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