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HH
opf fibration is a beautiful topological construction
representing a 3-dimensional sphere as a disjoint
union of pairwise linked great circles. Judging by its

presence on YouTube, it is almost an object of mass
culture; see [23] for a sampler. For visualization, we also
strongly recommend the film ‘‘Dimensions’’ [3].

Hopf fibration was defined and studied by the famous
German geometer and topologist Heintz Hopf in 1931
[16].

In a sense, contemporary algebraic topology has grown
up with the Hopf fibration: the development of the theory
of characteristic classes, homotopy theory, and K-theory
was much influenced by the study of Hopf fibration; see [4,
5, 8, 13, 14]. Hopf fibration appears in other areas of
mathematics and physics, including fluid dynamics, gauge
theories, cosmology, and elementary particles [22].

In fact, there exist four fiber bundles, called the Hopf
fibrations, whose fibers, total spaces, and bases are
spheres:

ð1Þ

The vertical arrows denote projections whose fibers, that is,
inverse images of points, are represented by the horizontal
arrows. The term ‘‘fibration’’ means that, locally, the total
space is the product of the base and the fiber, hence the
bigger spheres are filed with smaller ones. For instance,
through every point of S3 there passes one circle, S1, and
different circles do not intersect.

The construction of Hopf fibrations is very simple (we
recall it in the following) and is based on the algebras

Figure 1. Heinz Hopf, 1894–1971 (credit: Springer-Verlag,

Heidelberg).
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R;C;H;O; according to a famous theorem of Adams [1],
there are no such fibrations in other dimensions. Note that
the ‘‘magic’’ numbers 1, 2, 4, 8 appear twice: as the
dimensions of the bases, and also, this time shifted by 1, as
the dimensions of the fibers.

This note, based on the work [17], concerns a similar
problem: for which pairs (p, n), is Rn foliated by pairwise
skew affine subspaces Rp? Two disjoint affine subspaces are
pairwise skew if they do not contain parallel lines.1 In other
words, we consider fiber bundles

ð2Þ

with pairwise skew affine fibers. We call them affine Hopf
fibrations. We shall give an answer in terms of the Hurwitz-
Radon function that appeared in topology in the theorem
of Adams [2] about vector fields on spheres.

The reason for considering such ‘‘skew’’ foliations is
twofold. On the one hand, the central projection of a Hopf
bundle from a sphere to Euclidean space yields such a
foliation. And, on the other hand, without the skew
restriction, the problem is trivial: for any p \ n, one can
foliate R

n by parallel copies of Rp.

The Hurwitz-Radon Function
The sequence

1; 2; 4; 8; 9; 10; 12; 16; 17; 18; 20; 24; 25; 26; 28; 32. . .

is known (A003485, in the Sloane encyclopedia of integral
sequences [21]) as the Hurwitz-Radon function evaluated
at powers of 2. Namely, the Hurwitz-Radon function q :
N ! N is defined as follows. Every natural number N can
be written as N ¼ 2nð2mþ 1Þ, and the function q depends
only on the dyadic part of N, that is,

qðN Þ ¼ qð2nÞ;

and

qðN Þ ¼
2nþ 1; n � 0 mod 4

2n; n � 1; 2 mod 4

2nþ 2; n � 3 mod 4:

8
><

>:

The numbers N ¼ 1; 2; 4; 8 are the only numbers for
which qðN Þ ¼ N . The aforementioned formula can be
equivalently written as

qð2nþ4Þ ¼ qð2nÞ þ 8;

which is easier to remember.

The History of the Hurwitz-Radon Function

The Hurwitz-Radon function was discovered around 1920,
independently, by Adolf Hurwitz and Jean Radon [12, 18]2.
Both were working on the problem of ‘‘square identities,’’

or composition of quadratic forms, that is, formulas of the
type

ða2
1 þ � � � þ a2

r Þðb21 þ � � � þ b2s Þ ¼ c21 þ � � � þ c2N ;

where c1; . . .; cN are bilinear forms in a1; . . .;ar and
b1; . . .; bs with real coefficients. The above identity is said to
be of size [r, s, N].

For example, a formula of size [4, 4, 4] is Euler’s four-
square identity

ða2
1 þ a2

2 þ a23 þ a2
4Þðb21 þ b22 þ b23 þ b24Þ

¼ ða1b1 þ a2b2 þ a3b3 þ a4b4Þ2

þ ða1b2 � a2b1 þ a3b4 � a4b3Þ2

þ ða1b3 � a2b4 � a3b1 þ a4b2Þ2

þ ða1b4 þ a2b3 � a3b2 � a4b1Þ2:

that corresponds to multiplication of quaternions. Euler’s
identity is nothing other than the property jajjbj ¼ jabj in
H. It was discovered by Leonhard Euler in 1748, almost a
hundred years before the discovery of quaternions. Note
also that a similar formula of size [2, 2, 2], that corresponds
to multiplication of complex numbers, was known to
Diophantus, and also appeared in the early VII century in a
book of an Indian mathematician Brahmagupta; Fibonacci
also used it in his ‘‘Book of Squares.’’ There exists also a
square identity of size [8, 8, 8], found by a Dutch mathe-
matician Ferdinand Degen in 1818, that corresponds to
multiplication of octonions.

In 1898, Hurwitz proved his famous 1, 2, 4, 8 theorem,
stating that a square identity of size [N, N, N] can exist only
for n 2 f1; 2; 4; 8g. This is equivalent to the statement that
R;C;H;O are the only real normed division algebras with
unit. He also formulated a problem to characterize triplets
r ; s;N 2 N for which there exists a square identity of size
[r, s, N]. This problem remains wide open. Traditionally
considered as a problem of number theory, it plays an
important role in many other areas of mathematics; for
more details see [20].

Figure 2. Adolf Hurwitz, 1859–1919, and Johann Radon,

1887–1956 (both photographs: public domain).

1Note that if n-dimensional space admits pairwise skew p-dimensional subspaces, then n� 2pþ 1.
2The paper of Hurwitz was published posthumously.
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Hurwitz and Radon proved that a formula of size
[r, N, N] exists if and only if r � qðN Þ, and this is still the
only case in which the Hurwitz problem is solved.

The Hurwitz-Radon function later appeared, sometimes
unexpectedly, in many different areas, such as algebra, rep-
resentation theory, geometry, topology, and combinatorics.
The function gives the dimension of irreducible representa-
tions of Clifford algebras that are important in mathematics
and physics. The Hurwitz-Radon function appeared in the
context of multiantennas’ wireless communication.

The ‘‘exceptional’’ numbers 1, 2, 4, 8 (or 0, 1, 3, 7) often
appear in mathematics and physics. The best-known sub-
jects are: the celebrated results of topology about
parallelizable spheres and Hopf fibrations, and the famous
theorem of algebra about classification of real normed
division algebras. In these subjects, the above numbers
appear as the critical dimensions.

The Adams Theorem about Vector Fields on Spheres

The theorem of Adams [2] is perhaps the best known, and it
is one of the most beautiful applications of the Hurwitz-
Radon function.

THEOREM 1. The maximal number of vector fields on the

sphere SN�1, linearly independent at each point, is

qðN Þ � 1.

The existence part of this theorem follows from the
Hurwitz-Radon construction of square identities. Suppose
that we have a square identity of size [r, N, N]. Consider the
N-vector �c ¼ ðc1; . . .; cN ÞT . Since every ci is a bilinear form
in a’s and b’s, we have:

�c ¼ a1A1 þ � � � þ arArð Þ
b1

..

.

bN

0

B
B
@

1

C
C
A; ð3Þ

where A1; . . .;Ar are N � N matrices with real coefficients.
The existence of a square identity implies that, for every
nonzero �b 2 R

N , the vectors A1
�b; . . .;Ar

�b are linearly
independent, that is, that �c 6¼ 0 in (3) whenever �a 2 R

r is
nonzero. Indeed, the right-hand side of the square identity
is the square of the norm of �c, whereas the left-hand side is
the product of the squares of the norms of �a and �b.

Therefore, the existence of a square identity of size
[r, N, N] guarantees the existence of r (linear) vector fields
in R

N � f0g, linearly independent at each point. To obtain
(at least) r � 1 independent vector fields on SN�1, one now
restricts the constructed r fields to the round sphere and
projects to its tangent plane.

Let us mention that the existence part of the Adams the-
orem was known since the 1920s; the converse statement is
one of the most difficult results of algebraic topology.

Adams’s theorem generalizes the theorem that the
spheres S0; S1; S3, and S7 are the only parallelizable3

spheres. This was proved independently in 1958 by Ker-
vaire [15] and by Bott and Milnor [6].

The Classical Hopf Fibrations

The Hopf Fibration of S3

The fibers of the Hopf fibration

are obtained by the action of S1, the group of complex
numbers with unit absolute values, in the complex plane
C

2. The action is given by the formula

ei/ z1; z2ð Þ ¼ ei/z1; e
i/z2

� �
:

Restricting this action to the unit sphere S3 � C
2 given by

the equation

jz1j2 þ jz2j2 ¼ 1;

one obtains a fibration of S3 by circles.
Equivalently, one may consider the projection C

2 �
f0g ! CP

1 that sends a point of the complex plane to the
line through this point and the origin. In coordinates,

z1; z2ð Þ 7! z1 : z2ð Þ:

Restricting this projection to S3 � C
2, and noticing that

CP
1 ’ S2, the Riemann sphere, one obtains the Hopf

fibration.
Let us mention three properties of the Hopf fibration:

(1) every two fibers of the Hopf fibration are linked
nontrivially (see Fig. 3);

(2) every fiber is a great circle in S3;
(3) these great circles are equidistant from each other.

Figure 3. The Hopf link: two fibers of the Hopf fibration.

3Parallelizability of a manifold means that it admits as many vector fields linearly independent at each point as its dimension. Examples of parallelizable manifolds are

Lie groups.
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Higher-Dimensional Hopf Fibrations

The construction of the Hopf fibration of S3 has two
immediate generalizations.

Let us replace the algebra of complex numbers C by the
other division algebras, R;H, and O. The projections from
the quaternionic and octonionic planes to the respective
projective lines, H

2 � f0g ! HP
1 and O

2 � f0g ! OP
1,

are defined as in the complex case. Restricted to the
spheres S7 � H

2 and S15 � O
2, these projections give rise

to the following fibrations

whose fibers are S3 and S7, respectively (the quaternions
and octonions of absolute value 1). Note that HP

1 ’ S4 and
OP

1 ’ S8 since these are quaternionic and octonionic lines
completed by one point at infinity.4 Finally, replacing C by
R, one obtains the fibration S0 ! S1 ! RP

1 whose fibers
consist of two points. This provides a complete list of Hopf
fibrations (1).

Another straightforward generalization of the Hopf
fibration is obtained by replacing the plane by ðmþ 1Þ-
dimensional complex vector space. Consider the action of
S1 in C

mþ1 given by

ei/ z1; z2; . . .; zmþ1ð Þ ¼ ei/z1; e
i/z2; . . .; e

i/zmþ1

� �
:

Restricting this action to the sphere S2mþ1 � C
mþ1, one

obtains a fibration of S2mþ1 by S1. The base of this fibration
is the complex projective space CP

m.
The same construction can be applied in the quater-

nionic cases, replacing S1 by the unit sphere S3 � H. One
obtains three infinite series of fibrations:

ð4Þ

This construction does not work in the octonionic case, and
the fibration with fibers S7 ! S15 ! S8 remains exceptional
and does not belong to any series.

It is still true that every fiber of a fibration (4) is a great
sphere.

Projection to Euclidean Spaces

The usual way to ‘‘visualize’’ the Hopf fibration is by way of
projecting them to the Euclidean spaces.

The stereographic projection is ubiquitous. This map
identifies the sphere with one point, the North Pole P,
deleted, with n-dimensional Euclidean space (the tangent
space at the South pole); see Figure 4. The main property of
the stereographic projection is that this is a conformal map:
it preserves the angles. It sends circles to circles, except for

the circles that pass through P: they are sent to straight
lines.

An equally important projection from the n-dimensional
sphere to the n-dimensional Euclidean space is the central
projection. It projects the sphere Sn � R

nþ1, with the
equatorial sphere Sn�1 removed, from the center C of the
sphere to an affine space R

n � R
nþ1 that does not pass

through the origin. The central projection sends great cir-
cles to straight lines, and great spheres to affine planes.

The image of the Hopf fibration of S3 under the
stereographic projection is a beautiful geometric structure
in R

3 called the Villarceau circles. These circles foliate R
3

with a straight line removed (this line is the stereographic
image of the Hopf circle through point P). See Figures 5
and 6.

The image of the Hopf fibration of S3 under the central
projection is a fibration of R3 by lines; see Figure 7. These
lines are pairwise skew: two parallel lines ‘‘intersect’’ at
infinity, and their preimages in S3 are great circles that
intersect at a point on the equator.

EXAMPLE 2.1. The central projections of the fibrations (1)

and (4) give fibrations of the Euclidean space by pairwise

skew affine subspaces:

Affine Hopf Fibrations

Let us consider the affine Hopf fibrations (2) in full
generality.

Existence Theorem and First Examples

The problem of describing all pairs (p, n) for which such
fibrations exist was solved in [17].5

THEOREM 2. R
n admits a fibration by p-dimensional

pairwise skew affine subspaces if and only if

p� qðn� pÞ � 1:

P

C

Figure 4. The stereographic projection and the central pro-

jection: conformal geometry vs projective geometry.

4See [7] concerning octonions and OP
1.

5Thenext stepwouldbeaclassification of affineHopf fibrations. See [10,19] for partial results.Aclassification of fibrationsof S3 bygreat circleswasobtainedbyH.Gluck and

F. Warner [9]: they are in one-to-one correspondence with distance-decreasing self-maps of a 2-sphere.
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The condition of this theorem is satisfied in Examples
2.1. Indeed, if p ¼ 1 and n ¼ 2mþ 1, then n� p is even, so
that qðn� pÞ� 2. If p ¼ 3 and n ¼ 4mþ 3, then n� p is a
multiple of 4, so that qðn� pÞ� 4. Finally, if p ¼ 7 and
n ¼ 15, then qðn� pÞ ¼ 8.

Let us sketch the proof of Theorem 2. The existence part
is, again, a consequence of the Hurwitz-Radon construc-
tion. Given a square identity of size [r, N, N], rewrite the
vector of bilinear forms �c ¼ ðc1; . . .; cN ÞT of the right-hand
side in the following form

�c ¼ b1B1 þ � � � þ bNBNð Þ
a1

..

.

ar

0

B
B
@

1

C
C
A;

where B1; . . .;BN are N � r matrices with real coefficients.
Using the notation

Bð�bÞ :¼ b1B1 þ � � � þ bNBN ;

the square identity implies that Bð�bÞ is of maximal rank
(i.e., of rank r) for all �b 6¼ 0. This matrix expression is of
course equivalent (actually, dual) to (3).

Furthermore, using a linear change of coordinates
ðb1; . . .; bN Þ, we can assume that the last column of each
matrix Bi is the vector ð0; . . .; 0; 1; 0; . . .; 0ÞT with 1 at ith
position. Let B0

i denote the N � ðr � 1Þ matrix Bi with the
last column removed, and let

Bð�bÞ0 :¼ b1B
0
1 þ � � � þ bNB

0
N :

Our construction follows. Consider the direct product

R
N � R

r�1 ’ R
Nþr�1;

with R
N being understood as the ‘‘vertical,’’ and R

r�1 as the
‘‘horizontal’’ subspace; the coordinates on these spaces are
denoted by y ¼ ðy1; . . .; yN Þ and x ¼ ðx1; . . .; xr�1Þ, respec-
tively. At every point �b 2 R

N , consider the affine ðr � 1Þ-
dimensional subspace of RNþr�1 through �b defined by

y ¼ Bð�bÞ0x þ �b:

It follows from the maximality of the rank that any two of
these affine spaces are skew, and we obtain an affine Hopf
fibration on R

Nþr�1.
Next we give geometric arguments for the nonexis-

tence. Consider the first example after dimension three,
that of R4.

EXAMPLE 3.1. The space R
4 has no affine Hopf fibrations.

Indeed, the only affine subspaces of R4 that can be pair-

wise skew are 1-dimensional. However, if p ¼ 1, then

n� p ¼ 3 is odd, so qðn� pÞ ¼ 1. The condition of Theo-

rem 2 is not satisfied. The same holds true for all spaces of

dimension 2k, that is, the space R
2n admits no affine Hopf

fibrations.

For the proof, consider first R
3 equipped with the

fibration depicted in Figure 7. Choose any fiber, say
vertical, and a 2-dimensional plane orthogonal to it.
Draw a circle around the point of intersection of the
plane and the fiber. Pick any point x of the circle and
consider the unit vector that belongs to the fiber
through x. Project this vector to the tangent line of the
circle (the projection goes in two steps: first project to
the horizontal plane, then to the tangent); see Figure 8.
Since the fiber through x is skew with the vertical line,
the projection is nonzero.

Assume now that R4 is fibered by pairwise affine lines.
Exactly the same construction would then give a

Figure 5. A key-ring model of Villarceau circles (Wikimedia

Commons).

Figure 6. Villarceau circles and skew lines at Musée de

l’Oeuvre Notre-Dame, Strasbourg (photograph by Luba

Shenderova-Fock).

Figure 7. ‘‘Nested hyperboloids’’ by David Eppstein (from the

Wikipedia article ‘‘Skew Lines’’).
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nonvanishing vector field on a 2-dimensional sphere that
lies in a 3-dimensional affine subspace, orthogonal to a
fiber. This, however, contradicts the famous hairy ball
theorem: S2 does not admit a nonvanishing continuous
tangent vector field. It follows that R

4 admits no affine
Hopf fibrations.

A similar argument is used to deduce the ‘‘necessary’’
part of Theorem 2 from Theorem 1.

In fact, Theorem 2 extends to a semilocal result: its
assertion holds for fibrations by pairwise skew affine sub-
spaces of a neighborhood of a single fiber.

EXAMPLE 3.2. Let us now consider p ¼ 8 and n ¼ 24.

Since qð16Þ ¼ 9, the condition of Theorem 2 is satisfied.

We therefore have an affine Hopf fibration of R24 with 8-

dimensional fibers. This is the first example of an affine

Hopf fibration that does not come from a projection of a

classical Hopf fibration.

More generally, a remarkable series of affine Hopf fibra-
tions corresponds to the following dimensions:

p; n� pð Þ ¼ qð2nÞ � 1; 2nð Þ:

None of them is a projection of a classical Hopf fibration.

A Table

The condition of Theorem 2 is implicit (since p appears in
both parts of the inequality). Therefore, for a given n, the
situation has to be analyzed.

Consider the cases of n� 80. The dimensions
(p, n) for which affine Hopf fibrations of Rn with p-
dimensional fibers exist are presented in the follow-
ing tables.

Recall the semilocal extension of Theorem 2. It implies
that, given a (local) (p, n) affine Hopf fibration, the inter-
section with a hyperplane transverse to the fibers yields a
(local) ðp� 1;n� 1Þ affine Hopf fibration. This leads to the
notion of a dominant (p, n) affine Hopf fibration: it is the
case when a ðpþ 1;nþ 1Þ affine Hopf fibration does not
exist. In the table that follows, the dominant pairs (p, n) are
shown in boldface.

The fibrations with n ¼ 3; 7; 15 are the central projec-
tions of the Hopf fibrations. The next values are as
follows.

including two interesting cases: ðp;nÞ ¼ ð8; 24Þ and
(7, 31). The next values are:

Figure 8. Affine Hopf fibrations and vector fields on spheres.
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We see another example of an interesting ‘‘non-Hopf’’ fibra-
tion: R9 ! R

41 ! R
32. The next values are as follows.

and

We observe several more non-Hopf fibrations with rela-
tively large fibers.

Another observation is that some of the spaces admit no
fibrations with skew fibers at all. In addition to the cases
when the dimension is a power of 2, this happens for R80.

The Complex Case

The definition of affine Hopf fibrations in C
n is exactly the

same as in the real case. Surprisingly, the problem is much
more difficult in this case, and it seems not to be reducible
to linear algebra.

Only necessary conditions are known for the existence
of complex affine Hopf fibrations. It was proved in [10] that
an affine Hopf fibration of Cn with fibers of dimension p
may exist only if, for each integer r with 0� r � p, the
coefficients of tr in the power series expansion of

t

lnð1þ tÞ

� �n�p

is an integer.
The minimal dimension n, considered as a function of p,

grows very quickly. For example, for a complex skew
fibration with 1-dimensional fibers, the ambient space is at
least 3-dimensional (like in the real case), but for 2-di-
mensional fibers, the ambient dimension is not less than 26,
and for 4-dimensional fibers, the ambient dimension is not
less than 2884.
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[11] A. Hurwitz, Über die Komposition der quadratischen Formen von

beliebig vielen Variablen, Nahr. Ges.Wiss. Göttingen (1898), 309–316.
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