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Introduction

The Lie algebras considered in this paper lie at the juncture of two popular
themes in mathematics and physics: Weyl quantization and the Virasoro
algebra.

Quantization in the sense of Hermann Weyl [55] leads to deformations of
an algebra of functions on a symplectic manifold. The first work on this
theme is due to Moyal (see [41]), who proposed a deformation of the Poisson
bracket on the space of functions on R2n. The operation that he introduced
has been called the "Moyal bracket". A systematic study of the deformations
of Poisson brackets in the case of an arbitrary symplectic manifold was begun
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in the classical works of Vey [54] and Lichnerowicz and his coworkers (see
[11], [33], [34]). We point out only some of the works on this theme: [30],
[31], [50], [51], [56], [57]. De Wilde and Lecomte proved [56], [57] the
existence of a universal deformation of the Poisson bracket on an arbitrary
symplectic manifold (see [31], [50]). This results in the most interesting
examples of infinite-dimensional Lie algebras. (Here we note [52], in which
Saveliev and Vershik studied, in particular, the algebraic structure of such an
algebra in the case of a two-dimensional torus.)

The Virasoro algebra is a central extension of the Lie algebra of vector
fields on the circle. It was discovered by Gel'fand and Fuks [14]. The
Virasoro algebra (and its representations) have turned out to be related to
various problems in geometry [3], [9], [10]. It is actively exploited in quantum
field theory (see [5], for example). The problem of looking for analogues of
the Virasoro algebra that are associated with manifolds of dimension greater
than 1 has encountered the following obstructions. The Lie algebras of vector
fields on a manifold different from S1 do not have non-trivial central
extensions (see [12]). The same thing is true for the Lie algebras of contact
vector fields on contact manifolds. The known central extensions of the Lie
algebras of Hamiltonian vector fields on a symplectic manifold do not
possess a uniqueness property and do not extend to the corresponding Lie
superalgebras, which was communicated to the authors by Kirillov. Many
examples of infinite-dimensional Lie algebras are given in [24] (see also [14],
[22], [26]).

Our goal is to connect these two subjects.
Contact geometry is the odd-dimensional double of symplectic geometry.

The Lie algebra of contact vector fields on a contact manifold is the contact
double of the Lie algebra of Hamiltonian vector fields on a symplectic
manifold. Meanwhile there do not exist any non-trivial deformations of this
Lie algebra [11]. The analogue of a deformation of the Poisson bracket is a
series of extensions of the Lie algebra of contact vector fields [47] (see
also [44]). These extensions are constructed using some modules of
(generalized) tensor fields: modules of contact 1-forms, and so on. In
dimension 4k +1 some of the Lie algebras that arise have central extensions.
In this way we define "contact Virasoro algebras", the main object of our
study.

The general meaning of the process of quantization is the replacement of
an algebra of functions on a symplectic manifold (the algebra of observables)
by some algebra of self-adjoint operators in a Hubert space. In this process
the product of functions goes over to a product of operators and ceases to be
commutative. Thus, we get deformations of the algebra of functions in the
class of associative algebras. The "new" non-commutative multiplication of
functions is usually called a *-product. In the case of the linear symplectic
space R2" Weyl quantization proposes replacing functions on R2" by
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differential operators on R" (and for the Hubert space one usually takes
L2(R")). In this simplest case the ""-product is multiplication of differential
operators. The corresponding associative deformation was computed by
Moyal [41] and is usually called the Moyal product.

The most important property of the ""-product is its compatibility with a
deformation of the Poisson bracket: the Leibniz rule remains valid:

{A Β *, C}t = {A, B). *tC + B*t {A, C},,

where *, denotes ""-product (associative deformation of multiplications of
functions with respect to the parameter t), and {,}, is a deformation of the
Poisson bracket. This property means that the deformed Poisson bracket
defines a derivation of the ""-algebra of functions.

On a contact manifold there does not exist a ""-product in the usual
("deformation") sense [11]. The analogue of a ""-algebra is a series of
associative extensions of the algebra of functions on a contact manifold. We
construct a series of "contact" ""-algebras on an arbitrary contact manifold.
The Leibniz rule will hold for each of these algebras. This allows us to give a
meaning (in these terms) to the idea of "quantization of a contact manifold".

The associative algebras that have been constructed, just like Lie algebras,
can have non-trivial central extensions.

This paper consists of three chapters and two appendices. We have tried
to arrange the presentation so that each chapter (and if possible each section)
can be read (or omitted) independently.

In Chapter I we consider the linear symplectic space R 2 n + 2 , its
projectivization R ? 2 n + 1 , and the standard contact sphere S2n+l. In this
simplest case the deformation quantization was constructed classically. We
shall explicitly describe the extensions of the Lie algebras of contact vector
fields on &P2n+l (on S2n+1) corresponding to the Moyal bracket, and the
contact ""-algebras associated with the Moyal product. In this chapter we give
several examples. The simplest of them arise for η — 0 (on Sl). The
Virasoro algebra occurs in our series of Lie algebras in a natural way. The
other algebras of this series are non-trivial extensions of the Virasoro algebra.

Chapter II contains a survey of results on deformation quantization on an
arbitrary symplectic manifold. It is also an introduction to the modern
"cohomological technique" used in the theory of deformations of algebras.
The main object of this theory is a graded Lie algebra (and its cohomology).
An example of such an algebra is the Richardson-Nijenhuis algebra, the main
tool for computing the cohomology of a Poisson Lie algebra. We give a
method for constructing a universal deformation of the Poisson bracket and
""-product on an arbitrary symplectic manifold.

In Chapter III we generalize the results of Chapter I to an arbitrary
symplectic manifold.

The appendices contain some applications, computations, and questions.



138 V. Ovsienko and C. Roger

It is a very pleasant task for us to thank V.I. Arnol'd, who encouraged us
to write this paper. We also thank A.A. Kirillov who pointed out an
inaccuracy in [44], [47] in the computation of the cocycle defining the central
extensions (corrected in the present paper). Discussions with him in Luminy
were very useful in preparing this work.

§1. Main theorems

In this section we state the main results. Below we give all the
constructions and provide detailed definitions of all the concepts that we need.

Let M2n+l be a smooth contact manifold. We denote by ί)(ΑΓ) the Lie
algebra of all contact vector fields on M. (For brevity we shall often denote
this Lie algebra by the symbol fj.)

We consider the space of tensor densities on M. These are geometric
objects ("geometric quantities", see [25]), which (locally) have the form

(1.1) i» = / - ( ' b i A - A d I h + l ) ' 1

where/·= f{x\, ..., *2«+i) is a function on M, x, are coordinates, and the
number μ is called the degree of the tensor density φ. In other words, tensor
densities of degree μ are sections of the bundle (Λ2""1"1 Τ*Μ)μ over M. Each
space of tensor densities of a given degree on Μ is an f)(M)-module (relative
to the Lie derivative along the vector field).

We denote by Τ χ = T\(M) the space of tensor densities on Μ of degree

Theorem 1.1. There exists a chain of non-trivial extensions of Lie algebras

I)J - » f)! - » 0 ,

1 -• i)m —» f)m-l —» 0 ,

Remark 1.1. We shall leave it to the reader to verify that the space T\ as an
(j(M)-module is isomorphic to the space of contact I)-forms on M. Thus, the
Lie algebra [jj is an extension of the Lie algebra of all contact vector fields on
Μ by the module of all contact (j-forms. This extension was first proposed
by Lichnerowicz [34].

All the series of extensions can be represented in diagram form (Fig. 1).

Theorem 1.2. Suppose that the contact manifold Μ is compact and has
dimension dim Μ — Ak+ 1. Then the Lie algebra t)m has a non-trivial central
extension for m > k.
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Remark 1.2. For it = Owe talk about extensions of the Lie algebra of all
vector fields on S1 (the contact structure is trivial). The central extension of
ijo = f) is unique and is called the Virasoro algebra. The Lie algebras
obtained as a result of the central extensions f)m form a whole series of
extensions of the Virasoro algebra by modules of tensor fields o n S 1 . This
series is considered in detail in §4.

We now consider the commutative associative algebra CCO(M) of all
functions on Μ relative to usual (pointwise) multiplication. We denote this
algebra by Κ = K(M).

We shall also describe the extensions of Κ using the modules of tensor
densities on M. These extensions are no longer commutative, although they
remain associative. The resulting associative algebras turn out to be modules
over the Lie algebras l)m, where the action of tjm on them is given by
derivations (that is, they satisfy the Leibniz identity).

ο
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Fig. 1
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Theorem 1.3. (i) There exists a chain of non-trivial extensions of the algebra
K(M) in the class of associative algebras

0 -> Tx -• Kx -* Κ — 0,

0 -» ΤΛ -* Kt — Kx — 0,

0,

(ii) There are well-defined inclusions ljm C Diff(^2m+i) o/ iAe Lie algebras f)m

m ί/ie Lie algebras of all derivations of the associative algebras K2m+i.

It is likely that the inductive limit K^ — lim Km should be taken as the

analogue of a *-algebra on the contact manifold M.

Theorem 1.4. On a compact contact manifold M2n+l the associative algebra Km

has a non-trivial central extension for m > n.

Remark 1.3. The existence of central extensions for the associative algebras
Km (in contrast to Lie algebras) does not impose restrictions on the dimension
of the manifold. There actually exists a construction of Lie algebras that are
related to contact manifolds of dimension 4fe + 3, which have non-trivial
central extensions, but these algebras cannot be realised as a chain of non-
trivial extensions of f)(Af).

For Lie algebras of vector fields on manifolds there is the concept of local
[11], [12] (diagonal, see [12]) cohomology. (All the cocycles that are
considered in relation to this are defined using differential operators.) The
analogous definitions also exist for associative algebras of functions (see §6.2
for more details). We shall prove a "uniqueness theorem" in a weak form (in
the class of extensions associated with local cohomology).

Proposition 1.1. In the case of the standard compact sphere S2n+l {and also in
the projective space RP2n+l) all the extensions are unique in the class of local
extensions.

Remark 1.4. We assume that the uniqueness remains valid if we remove the
locality condition. On the other hand, in the case of more complicated
contact manifolds the analogy with the symplectic case forces us to suspect the
existence of other non-trivial extensions even in the class of local extensions.
In either case the extensions that we construct will be connected with the so-
called universal deformation (the most interesting deformation) of the Poisson
bracket (and also of the algebra of functions) on the symplectization of the
contact manifold.
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CHAPTER I

ALGEBRA

§2. Moyal deformations of the Poisson bracket and *-product on R2n

2.0. Linear symplectic space.
Consider the linear space β?2", and fix a non-degenerate skew-symmetric
bilinear form ω on R2" : ω(υ, w) = — ω(κ>, υ). Such a form is called
symplectic, and the pair (R2", ω) is called a linear symplectic space. The linear
operators that preserve the symplectic form are called linear canonical
transformations. They form a subgroup of GL(2n, R) which is called the
symplectic group and is denoted by Sp(2n, K>).

The coordinates in which the form ω is given by the matrix ( _g Q j are

called Darboux coordinates. They are written (pu ..., pn, q\, ..., qn). In
Darboux coordinates the form ω can be written in the form

η

u) = ^ dpi Λ dqi

t=l

(the linear space R2" is identified with its tangent space and the form ω turns
into a differential form). The basis in R2" that is dual to the Darboux
coordinates is denoted by dPi,..., dPn, dqi,..., dqn.

The form ω defines an operator 1R2" -> IR2"* such that a vector υ is
mapped to the linear functional ω(·, ο). The inverse operator R 2" -* K2"* is
given by the bivector

The bilinear operator {F, G } on a space of functions on some manifold is
called a Poisson bracket if it is skew-symmetric:

(2-1) {F,G} = -{G,F}

and satisfies the Jacobi identity

(2.2) {F, {G, H}} + {G, {H, F}} + {H, {F, G}} = 0

and the Leibniz identity

(2.3) {

The identities (2.1) and (2.2) mean that a Lie algebra structure is defined on
that space of functions. Therefore an operation satisfying these identities (but
not necessarily (2.3)) is called a Lie structure.

The bivector Ρ defines a Poisson bracket on R2":

(2.4) {F,G} := P(dF,dG).
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In Darboux coordinates the bracket (2.4) takes the following form:

(2.5) {i',G}

The operation (2.5) defines a symplectic form on (IR 2")* (the Poisson bracket
of two linear functions on R ̂  is a constant). The Lie algebra of all functions
on R 2 " is denoted by (5.

The space of all homogeneous quadratic polynomials in pt, qt is closed
under the Poisson bracket and forms a finite-dimensional Lie algebra. It is
called the symplectic Lie algebra and is denoted by sp(2n, IR).

With each function Η on a manifold with a Poisson bracket one associates
a vector field C(H), called the Hamiltonian vector field with Hamiltonian H.
The field C(H) is defined by its action on a function:

Here LC(H) is the Lie derivative along the vector field C(H). I t follows from
formula (1.5) that in Darboux coordinates on R 2 "

(2.6)

2 nThe Hamiltonian vector fields on (IR2n, ω) preserve the symplectic form:
Lc{H)^ ~ 0· (This follows, in particular, from the Jacobi identity.)

The linear Hamiltonian vector fields on R2" correspond to quadratic
functions. Hence, the symplectic Lie algebra sp(2«, R) is isomorphic to the
Lie algebra of all linear vector fields on R 2 " that preserve the form ω.

2.1. Higher Poisson brackets on a linear symplectic space.
Two operations on ( R 2 n , ω) are defined invariantly: the product of functions
and the Poisson bracket. (This means that it is not necessary to use
coordinates in their definitions.) We define the operations {F, G}m,
depending on the m-jets of the functions F and G. Darboux coordinates will
occur in the definition. A n d indeed, these operations will not be preserved
under arbitrary symplectic transformations, but will be invariant under linear
canonical transformations and therefore will be invariantly defined as
operations on linear symplectic space.

The bivector Ρ defines a linear operator on the tensor product of the space
of functions with itself:

V : F ® G ·-> P(F,G) = ^(FPi ® Gqi - FK®GK).
t = l

We denote by tr the operator that maps the tensor product of two functions
into the usual product: tr(F ® G) = FG. The operator tr is the operator of
restriction to the diagonal R2"<-+ R ^ x R 2 " (the tensor product of functions
on R 2 n is identified with a function on R ^ x R 2 " ) .
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We shall call the operations

(2.7) {F,G}m = tr(7»m(/'®G))

higher Poisson brackets.

Examples. {F, G}0 = FG is the usual product of functions, {F,G}i = {F, G}
is the Poisson bracket. On !R2 the higher Poisson brackets have the form of a
"differential Newton binomial":

{F, G}i = FppGqq - 2FMGpq + F^G^,

{^J G}S = FpPpGqgg — ZFppqGqqj, + ZFyqqGjyq ~ FgqgGppj,

and so on.
In the general case of R2n the formula is analogous. For example,

{F,G}i = FPiPjGqigj - 2FPiqjGPj1i + F S i i j G > i P > .

Here we have used the notational convention, widely used in physics, of
summing over repeated indices. The indices i and j are independent and vary
from 1 to n.

Assertion 2.1. The general formula for the operations (2.7) has the following
form:

(2.8) {F,G}m=

where i and j are multi-indices, all the indices is, j t vary from I to η and are
independent of each other.

Assertion 2.2. Up to proportionality the operation (2.8) is a unique differential
operator of order 2m on the space of functions on R2", and this operator is
invariant under the action of the group of linear canonical transformations
Sp(2«, R).

Remark 2.1. The operations (2.8) have a number of important properties.
They are connected with the classical theory of invariants [17], [18] and
variational problems [43]. Using them is a convenient way of describing
invariant differential operators (see, for example, [45]). They are often called
transvectants and hyper-Jacobians (this is also related to a number of their
virtues).

Remark 2.2. In the case of R 2 the higher Poisson brackets turn out to be
related to the second Hamiltonian structure of Gel'fand and Dikii (Dickey)
(see [45]).
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2.2. Deformation of the Poisson Lie algebra.
Theorem 2.1 (see [11], [33], [54]). The operation

(2.9) {F,G}t = {F,Gh+i-{F,G}3 + ---+ {2k

v

+l)l{F>

defines a Lie algebra structure on the space of functions on !R2", and this
algebra structure is isomorphic to the algebra of functions on R2" relative to the
Poisson bracket.

(In order not to get involved with questions of the convergence of the series
(2.9) it is possible to restrict, say, to functions that are polynomial in the /?,.)

This operation was discovered by Moyal. It is called the Moyal bracket.
The operation is skew-symmetric and satisfies the Jacobi identity but not the
Leibniz identity. Therefore it is a Lie bracket but not a Poisson bracket. The
theorem means that the Moyal bracket is a non-trivial deformation of the
Poisson bracket in the class of Lie structures (it is obvious that as t -> 0 it
becomes the Poisson bracket).

Lie structures that depend on a bounded number of jets of functions were
studied in a paper by Kirillov [21], in which he proved, in particular, that in
this case a non-degenerate Lie structure on an even-dimensional manifold must
be a Poisson structure. In the class of Poisson structures any deformation of
the bracket (2.5) is trivial (Darboux's theorem). All this does not contradict
Theorem 2.1, since the Moyal bracket depends on unboundedly high jets of
the functions F and G.

Corollary (of Theorem 2.1). The higher Poisson brackets satisfy the following
identities (of Jacobi type):

{2k + m 2 l 2 k + l)^£ = 0 v ' v '

where the symbol <s denotes cyclic permutation of the functions F, G, H.

Examples. For m = 0 the identity (2.10) coincides with the usual Jacobi
identity. For m = 1 it can be written in the form

(2.10') KS{F, {G, H},}, + \s{F, {G, H}»h = 0,

and for m = 2 in the form

(2.10") ^ { F , {G, tf }χ}5 + ̂ {F, {G, H}3}3 + ̂ {F, {G, H},}, = 0.

The identities (2.10) follow immediately from Theorem 2.1 (namely, from the
Jacobi identity for operation (2.9)). These identities have a simple meaning in
cohomological language.

Theorem 2.2 (see [11], [54]). The Moyal bracket is the unique (up to
isomorphism) non-trivial deformation of the Poisson bracket in the class of Lie
structures.
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2.3. Connection with Weyl quantization.

It is perfectly clear that, while significant for elegance, a unique deformation
of a Poisson structure cannot have a physical interpretation. The Moyal
bracket can be understood as a "quantum Poisson bracket".

The problem of quantization is the problem of associating self-adjoint
operators in a Hubert space with functions on R 2 n + 2 . In doing this it is
required that the linear functions />,, #, be associated with operators ph qt that
satisfy the (Heisenberg) commutation relations:

[Pi, £·] = H6ij, \pi,P,] = [Qi, Qj] - 0,

where h. is a parameter. By the Stone-von Neumann theorem quantization is
unique in the sense that (up to conjugation) the operators pt and #,· are
differential operators in L 2 (R" + 1 ) :

ξϊ = qi is the operator of multiplication by a function,

The product of operators defines an associative operation */) on the space of
functions via the condition F*a G = FG, which should be a deformation of
the usual product of functions.

Weyl quantization solves this problem in the following way. With each
polynomial F{plt qt) one associates a symmetric polynomial F(i>i,qi) of the
operators pt, qt according to the rule

$) :=Sym

Assertion 2.3. - (F* A G - G*nF) = {F, G }hi.

The resulting operation on the space of functions is called a ""-product.
The explicit expression for this operation has the following form:

(2.11) F*hG = FG + h{F, G)x + ~{F, <?}, + · · · + ^{F, G}k + . . . .

Formula (2.11) is often written symbolically in the following equivalent
form (emphasizing the similarity with the exponential series):

and formula (2.9) in the form

s

{F, G}t = — ^ - '-*- (F ® G).

The operation (2.11) is called the Moyal product.
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Thus, the algebra of functions on Β?2""1"2 simultaneously admits a
deformation as a Lie algebra and as an associative algebra. It is a remarkable
fact that the Leibniz identity holds as before:

{F, G *h H}_h2 = {F, G}_h2 *hH + G*h {F, Η }_h,.

Weyl quantization is probably the best known and most popular method of
quantizing classical mechanical systems. We shall not go into details, but
restrict ourselves to a reference to a paper by Lichnerowicz [33] (see also [11]),
in which an "axiomatic" approach to quantum mechanics is proposed using
the language of deformations of Poisson algebras.

§3. Algebraic construction

3.1. Projectivization of a symplectic space.

The symplectic structure on the standard symplectic space R 2 n + 2 defines a
standard contact structure on R/"2""1"1 (and also on 5 2 n + 1 ) . We give a simple
description of the Lie algebra of contact vector fields on RP2n+1 (and 5 2 π + 1 )
and of all the modules Τ χ.

Algebraic definition. We consider affine coordinates on IRP 2 n + 1 :

(3.!) *< = .-£_, y ^ - i i - , , = ! , . . . , „ , , = Εϊ±1,
9n+l 9n+l 9n+l

where pi, ..., p»+\, q\, ..., qn+\ are Darboux coordinates on R 2 n + 2 . The
standard contact structure on R P 2 n + 1 is the conformal class (a) of the \-form

( 3.2)

(that is, the whole space of 1-forms of the shape/- a, where/is a function).
A contact vector field on IR P 2 n + 1 is a vector field Ό e Vect(R2n+1) that

preserves the class (a). In other words, the Lie derivative of α along D
multiplies α by some function:

Lv(a) = mva.

The inadequacy of this definition is the necessity of verifying that it does
not depend on the choice of Darboux coordinates (p, q) (which, however, is
quite simple). In order to give another definition, we note that all the 1-forms
of the class (ot) have common hyperplanes in the tangent space TRP2n+l on
which the form α vanishes.

Geometric definition. We consider an arbitrary point ρ e RP2n+1 and the
corresponding one-dimensional subspace Vp C R 2 n + 2 . The skew-orthogona
complement Vj~ is the subspace of !R 2 n + 2 that is orthogonal to Vp relative t
the (bilinear skew-symmetric) form ω. (The space Vp has dimension 2n +1
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and contains Vp.) The projectivization of Vp

! 1
p e lRP 2 n + 1 :

of dimension 2n is denoted by Κ Pp2". Let Yp be a hyperplane in the tangent
space Tp(RP2n + i), tangent to R Pp". The distribution Γ in the tangent
bundle T(RP2n+l) is called the standard contact structure on \RP2n+1, and the
plane Tp is called the contact hyperplane at the point p.

The connection between the two definitions is that Yp is the same
hyperplane on which the form α vanishes (check this!). Thus, the standard
contact structure on 1RP2"+ 1 is the projectivization of the symplectic space
lp2n+2 ^ m ^ 6 c a s e o f j j^ S pj j e r e 52""1"1 the definition is analogous).

General definition. An odd-dimensional manifold M2n+1 is called a contact
manifold if a distribution of hyperplanes in TM is fixed on Μ that is non-
degenerate at each point.

A local contact structure can be defined as a distribution of hyperplanes on
which some 1-form α vanishes. Such 1-forms are called contact. All contact
manifolds are locally isomorphic to each other. There exist coordinates
(contact Darboux coordinates) in which the contact structure is defined by the
1-form (3.2). The non-degeneracy of the distribution means that locally the
1-form α can be chosen so that the form α Λ (da.)" is non-degenerate.

Remark. There may exist many different contact structures on the same
manifold. The classical example is the sphere S3: there are infinitely many
contact three-dimensional spheres. Martinet's theorem [39] asserts that in each
homotopy class of distributions of hyperplanes o n S 3 there is a contact
structure (nowhere non-degenerate). These classes are labelled by the integers.
Moreover, there are more contact structures on S3: the so-called "non-
standard" contact structure of Bennequin [4] is homotopic to the standard one
in the class of distributions but not homotopic in the class of contact
structures. (Recently Ya. Eliashberg proved that there are no other such
structures on S3.) On the other hand, a contact structure exists on any
oriented manifold of dimension 3 (a classical theorem, proved by Lutz [36]
and Martinet [39]). A contact structure exists in every homotopy class of
two-dimensional distributions on an arbitrary three-dimensional manifold.

Thus, the class of three-dimensional contact manifolds is substantially
greater than simply the class of (ordinary) three-dimensional manifolds. In
higher dimensions the question is still more complicated and is less studied.
All the Lie algebras of contact vector fields on different contact manifolds are
not isomorphic to each other.
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The Lie algebras that we shall discuss below are connected with the
standard contact spheres S 2 " + 1 (or R P 2 n + 1 ) . These algebras will be our
fundamental example (the general case will be considered in Chapter III).

3.2. The Lie algebra of contact vector fields and modules of tensor densities on
IRP 2 " + 1 (and 5 2 " + 1 ) .
For the linear symplectic space 1R2"+2 we consider the homogeneous functions
(with singularities at the origin):

(3.3) F(cr) = c"F(r), v,e Ε U \ {0},r € IR^ 2 \ {0}.

We denote by Τ χ the space of homogeneous functions of degree ν = — 2λ.
It is clear that the Poisson bracket preserves homogeneity:

(3.4) { ^ A , ^ } C ^ A + , + I .

Thus the space Τ~\ of homogeneous functions of degree 2 on R 2 n + 2\{0}
forms a Lie subalgebra. The space Τ χ is a module over T-\.

Proposition 3.1. (i) The Lie algebra fjflR-P2"*1) of all contact vector fields on
R P 2 n + 1 is isomorphic to Τ -χ.

(ii) The module of all tensor densities on ! R P 2 n + 1 of degree λ is isomorphic
to the Τ -\-module Τ χ.

(For the case S2n+l the analogous assertion holds if in definition (3.3) we
impose the restriction c > 0, which "doubles" the space of homogeneous
functions.)

Proof (see §10). Every homogeneous function of degree 2 corresponds to a
homogeneous Hamiltonian field of degree 1 on R2 n + 2\{0}. Such a vector
field is projected onto \RP2n+1 and defines a contact vector field. The
converse: every contact field on RP2""1"1 extends uniquely to a homogeneous
Hamiltonian field of degree 1 on R 2 n + 2 ; this is also easy to verify. The
second part of the assertion, relating to Τ _ i-modules, is proved in §10 in a
more general case.

Corollary. The module of contact \-forms on RPZn+1 is isomorphic to the
Τ _i-module Τ \ (of homogeneous functions of degree —2 on R2 n + 2\{0}), and
hence, is also isomorphic to the module of tensor densities of degree l/(n+l) on

2 l

In fact Τ ι is the dual space to Τ _ ι over FQ, the space of functions on
2 + 1 (see details in §10).

Definition. The operation {,} (satisfying the property (3.4)) is defined on the
space of tensor densities on | R P 2 " + 1 (and also 5 2 n + 1 ) , and this operation is
mapped to the Poisson bracket on R 2 n + 2 under the isomorphism between
tensor densities and functions. In Darboux coordinates this operation has the
form

(3.5) {f,g}l = fxgv - fygx + /ζ(μ3 - f g) + g,(Xf -
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where S = xdx+ydy is the Euler field. We shall call this operation the
Lagrange bracket. The same isomorphism maps higher Poisson brackets onto
the space of tensor densities. They satisfy the condition

(3.6) {?>,?»}„ C J\X+,,+m·

Remark. For λ = μ = — 1 the Lagrange bracket (3.5) becomes the usual
bracket on a contact manifold, defined by contact Hamiltonians (see [1], [2]).
It is curious that thus the contact Hamiltonian is a tensor density of degree
— l/(w + 1) (or an object inverse to a 1-form). For more details see §10.

3.3. Extensions of Lie algebras.
Let 91 be a Lie algebra, and V a module over 91. We denote by C?(9I, V)
the space of skew-symmetric ^-linear functions on 91 with values in V. The
operator d = dq : C«(Sl, V) -• C ? + 1 (9I, V) defined by

(3.7) dc(al,...,a1+l)= ]T] (-l)Ta rc(ai,.. ., <fr,.. . , o i + i )

(-iy+'~1c([ar,a,],al!...,ar,...,a,,...,ai+l)

is called a differential. A functional c is called a cocycle if dc = 0. It is easy
to check that d2 = 0. Therefore Im </,_! C Ker dq. The quotient space
H9C&, V) := Ker dq/Im dq^\ is called the space of q-dimensional cohomology.

Consider a functional c e C2(9I, V). We define the following operation on
the space 21 ® K:

(3.8) [{x, v), (y, w)] = ([x, y]a,x(w) - x{v) + ac(x, y)),

where α is a parameter. This operation satisfies the Jacobi identity and
defines a Lie algebra structure on 91 φ V if and only if c is a cocycle.

The sequence of homomorphisms of Lie algebras

0 -• V -> 2t φ V -> Qt — 0

is called an extension of the Lie algebra 91 by the 9I-module V. If c = 0,
then the Lie algebra (3.8) is called a semidirect product and is denoted by
91 κ V. Two extensions defined by cocycles C\ and c2 are isomorphic if and
only if their cohomology classes (that is, the projections of cx and c2 in the
space //2(9t, V)) coincide. In particular, if c e Im d\, the extension is said to
be trivial; in this case the Lie algebra (3.8) is isomorphic to 91 κ V.

An extension is said to be central if V is a trivial 9I-module; in other
words, the subspace V is contained in the centre of the Lie algebra (3.8) (that
is, [(x, 0), (0, υ)] = 0 for any χ e 91, υ e V). Central extensions of Lie
algebras are very popular in both mathematics and physics. They arise
naturally in the classification of homogeneous symplectic manifolds (see [20],
[29], [53]).
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3.4. Extensions of a Poisson Lie algebra.
The construction that we shall describe is based on the following simple,
general fact: any formal deformation of a Lie algebra defines an infinite series
of successive extensions of it. We construct a series of extensions of the
algebra of functions on a symplectic space, corresponding to the Moyal
deformation (2.9).

Let Τ be the Lie algebra of smooth functions on R2 n + 2\{0} (a special
choice of the class of functions will be explained later). The Moyal bracket
defines a Lie algebra structure on the space !F[[t]] of formal series in the
variable t with coefficients from T:

{Ft™,Gt'} = f Lf; —L-{Ft
fc=O * ' '

(this fact is a general one for a deformation of a Lie algebra: check that the
Jacobi identity in the Lie algebra F[[t]] is equivalent to the series of "higher
Jacobi identities" (2.10)).

We define a series of Lie algebras
+x = o>

(as quotients of the Lie algebra F[[t]] by a chain of ideals, embedded in each
other). Every Lie algebra ©* is an extension of the previous one:

(3.9) 0-» *"-» β*-»β*_! -> 0.

(The ©fc_i -module structure on Τ is defined by the action of the first term.
Formally, if F = F0 + Fxt+ ... +Fk__xt

k~l is an element of C5Jt_1, then
F(G) := {Fo, G} .) It is easy to compute the cocycle defining this extension
explicitly:

(3.10) Ck{Ft\Gt') = — _ { F , G } , , + 1 >

where the numbers i, j , k, I are related by the condition

(3.11) i + j + / - * = l .

The resulting extensions (3.9) are non-trivial, since the Moyal deformation has
infinite rank (see §2 for more details) (that is, the series (2.9) cannot be
represented as a polynomial in f)· One has as a result a projective chain of
homomorphisms of Lie algebras:

Definition of the Lie algebras (j^. In contrast to the Moyal deformation the
chain of extensions of the Poisson algebra Τ can be restricted to the
subalgebra Τ _ ι = f) C Τ (of all homogeneous functions of degree 2),
isomorphic to the Lie algebra of contact vector fields on RP2n+l. Then we
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obtain a series of Lie subalgebras ^k C 7 · As a linear space each Lie
algebra §k has the form

(jt S T_x φ Τχ © Τ* φ · · · θ ^,*_ι ·

In fact the cocycle C\,

CI(F,G)=UF,G}3,
0

restricted to Τ-\, takes values in the Τ-\-module ^ Ί (of functions on
IR2n+2\{0} that are homogeneous of degree —2), and so on. Using the
conditions (3.6), we deduce by induction that the cocycle Ck, restricted to the
Lie algebra \)k-\, takes values in

§4. Central extensions

The exact sequence of homomorphisms of Lie algebras

where the 9I-module structure on 1R is trivial, is called a one-dimensional
central extension of the Lie algebra 21.

Central extensions are the simplest extensions of Lie algebras. They appear
both in geometry and in physics. Thus, they play an important role in
symplectic geometry [20], [29] and in various versions of quantization (see
also [23]).

We shall describe the construction of central extensions of the Lie algebras

f)m(IR P4k+1) for m > k.

4.1. Residue.
On the space !Fn + \ of functions on | R 2 n + 2 that are homogeneous of degree
—2M — 2, we define the linear functional

res : Fn+1 -> R.

Let F e Tn+\ and set

(4.1) res(F) = /

where
n+1

t=l

is the symplectic form on IR2"*2, and
. n+1

α = 2 ι = ΐ

its primitive. The functional (4.1) is called the residue.
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Assertion 4.1. The residue is the unique linear functional on the space Tn+\
that is invariant under the action of the Lie algebra I).

Remark 4.1. The space Tn+\ is isomorphic as an ^-module to the space of
differential forms on the contact sphere S2n+l of degree 2n+ 1. In this
language the residue is the integral of a differential form over the sphere.

4.2. Cocydes on the Lie algebra f)m(!RP 4 k + 1).
We recall that an element of the Lie algebra t)m has the form

»=o

where F e Τκ-\.
As in §3.4, we consider the Lie algebra F[[t]] of formal power series in t,

whose coefficients are functions on U2n+2. The Moyal bracket makes
into a Lie algebra.

First we define a 1-cocycle

We consider the radius-function on R2n+2,

r(x, 10 = £>?+*?)

and set

(4.2) X(F) := {F.logr}, = £ { # , logr}t • f

for F = Σ/LVi^'.

Proposition 4.1. λ(.Ρ) is a non-trivial cocycle on the Lie algebra F[[t]\ with
values in

Now, using the 1-cocycle (4.2) we define a 2-cocycle on the Lie algebra (j

We set

(4.3) c(F,G) = res(F-{G,logr} t),

where the residue is taken of the projection of F- {G,logr}t onto Fn+\. In
other words, in components

(4.4)

Theorem 4.1. The functional c defines a non-trivial 2-cocycle on the Lie

algebra f)m.

Proof We shall first show that the functional c is skew-symmetric.
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Lemma 4.1. For arbitrary functions F e T\, G e Τ μ, where λ + μ—1 = n—m,

Proof of the lemma. We fix an affine plane Γ C IR 2 " + 2 by the condition
qn+\ = 1.

We choose affine coordinates on Γ:

Pi 9> . , Pn+l
, yi= , t = l , . . . ,n , z -

9n+l

Let Ω denote the restriction of the (2n+ l)-form α Λ ω" to Γ:

Ω - α Λ ω η | Γ .

The form Ω is the standard volume form on the plane Γ:

Ω = dx1 Λ • · · Λ άχη Λ dj/i Λ · · · Λ dyn Λ dz.

Suppose that the homogeneous functions F, G satisfy the condition
{F, G}me Tn + i (this means that F e Τx, G e Τμ, and λ + μ + m = n+ 1).
Then the (2n+ l)-form {F, G}ma.Aaf is homogeneous of degree 0, and hence

{F,G}maAwn = 2 f{F,G}mQ
Jr

(restriction: {F, G}m\r is a function that decreases like r *" 2 on Γ and
hence the integral on the right-hand side is well defined).

In order to show that this integral is identically zero (independently of the
choice of the functions F and G), we use formula (2.8). We note first that all
the terms in the integral

L·that contain derivatives with respect to pu ..., pn, q\, ..., qn vanish immediately
(this follows directly from integration by parts). Secondly we note that this
integral does not depend on the choice of the plane Γ. We fix a plane Γ' by
the condition qx = 1. Then

But all the terms in the second integral that contain derivatives with respect to
P2, ••-, Pn + u qi, ···, qn+\ vanish. Thus, the whole expression is equal to zero
and the lemma has been proved.

Now the skew-symmetry of the cocycle c can be easily established using the
Leibniz identity.

We shall prove that the function c is a 2-cocycle:

(4.5) c (F, {G, H}t) + c (G, {H,F}t) + c (H, {F, G}t) = 0.
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In fact, it is obvious that the functional λ defined by formula (4.2) is a
1-cocycle. Therefore

We recall that c{F, G) = res(F, X(G)), from which (4.5) follows immediately.
It is obvious that the cocycle c is non-trivial, since there does not exist a

homogeneous function G on U2n+2 such that λ ^ ) = {F, G}t. This proves
the theorem.

4.3. Residues of a pair of functions.

The cocycle c(F, G) can be represented as the "residue of the pair of
functions" F and G. Recall that if F e J-\, G e T^, where λ + μ + m = n+l,
then res{.F, G}m = 0. Assume that λ + μ + m Φ n+l. The bilinear mapping

Χ + μ + τη — η—I

is defined.

Assertion 4.2. The functional Rm extends to the space Τ χ (g) Tn-m+\-x,
is given in this case by the expression

, G) = - / Fi {d, log r}ma Α ωη.

4.4. Extensions of the associative algebra of functions.
Let Κ = CxCRP2n+l) be the commutative associative algebra of smooth
functions on R P 2 n + 1 . The construction of extensions of Κ as an associative
algebra will be analogous to the construction of extensions of the Lie algebra
of contact vector fields f) = f)(tRP2 n + 1).

Let Τ be the space of smooth functions on R2"+ 2\{0}. As an f)-module
the algebra Κ is isomorphic to the space f 0 C Τ of all homogeneous
functions of degree of homogeneity 0. We consider the space ^"[[i]] of formal
series in the variable t with coefficients in Τ. The Moyal product (2.11)
defines an associative algebra structure on Τ [[<]]. We consider the series of
associative algebras

+1 = 0).

By definition the algebra Km is a subalgebra of Tm of the form

(thus the extensions of the algebra of functions are defined by the Moyal
product).

The construction of central extensions is also analogous to the case of Lie
algebras. The explicit formula for a 2-cocycle a : Km (g> Km -» R has the
following form:

(4.6) a{F, G) = res(F · G*t log r),
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or, in more detail, F = £F,i', G = YfijtJ, F, e Tu Gj e Τh

(4.6') o(¥it\G^)- Τ

Theorem 4.2. 77ze cocycle a defines a non-trivial central extension of the
associative algebra Km for m > n.

To avoid overloading the text with technical details, we shall not analyze
the case of the associative algebras Km in detail. All the computations here
are analogous to the case of the Lie algebras f) m. The general theory of
Hochschild cohomology of associative algebras is contained, for example,
in [58].

§5. Examples

5.1. The Virasoro algebra.
Consider the plane (R2, dpf\dq). The Lie algebra f) in this case is isomorphic
to the Lie algebra of all vector fields on S1 (= 1

The space Τ χ (of all functions on R2\{0} that are homogeneous of degree
—2λ) is isomorphic to the space of tensor densities on S1 of degree λ. The
isomorphism is given by an explicit formula. A homogeneous function
Fe Tx has the form F(p, q) = r~2Xf(z), where (r, τ) are polar coordinates.
Then the isomorphism between Τ χ and tensor densities is constructed in the
following way:

(5.1) F « — / { r ) ( d r ) \

Via this isomorphism the Poisson bracket on R 2 defines an invariant
differential operator on tensor densities. Let / = /(τ)(ί/τ)λ, g = g(t)(£?r)tl;
then

(5.2) {1),9}i = (μ/'g ~ Xfg') (dr) A + " + 1 .

In particular, for λ = μ = —1 the operation (5.2) becomes the usual
commutator of vector fields o n S 1 :

The Lie algebra Vect Sl has a unique non-trivial central extension, defined
by the cocycle

(5-3) c if(T)±,g{T)£) = J^ f(T)9"'(T)d(r),
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which is called the Gel'fand-Fuks cocycle (see [14]). The Lie algebra obtained
as a result of this central extension is called the Virasoro algebra.

There is no difficulty in verifying that formula (5.3) coincides with (4.3).

5.2. Extensions of the Virasoro algebra.
The construction of the Lie algebras b,m and their central extensions in the
one-dimensional case gives a series of extensions of the Virasoro algebra. The
first non-trivial extension is constructed in the following way. We consider the
space T5(Sl), consisting of tensor densities of degree 5 of the form

/ = /(r)(dr)5

(where τ is a parameter on Sl). It is known that there exists a non-trivial
extension of the Lie algebra Vect Sl = bi in the module Τ 5 (see [12]). We
shall show that this extension arises as a subalgebra of the Lie algebra 1

Lemma 5.1. The seventh higher Poisson bracket is given by the 2-cocycle

Let F, G e Τ _ ι be functions of degree of homogeneity 2 on the plane.
Then it is easy to check that {F, G} 3 = {F, G} 5 = 0. Hence, using the
Jacobi identity (2.10) it follows immediately that the mapping

a(F,G) = {F,G}r

is a 2-cocycle.
In the language of vector fields the explicit formula has the shape

(5.4) a (fir)±,e(T)±) = (/"VV " /'V") (dr)\

Thus, an extension of the Virasoro algebra is defined:

(5.5)

LV A / \
where L/ψ = ( / ψ ' + 5/ 'ψ)ί*τ5 is the Lie derivative of a tensor density of
degree 5 along a vector field.

We now carry out a detailed construction of the Lie algebras f)m in the
one-dimensional case.

5.3. One-dimensional case: the Lie algebras ^(S1) and their central extensions.
We need to find an explicit formula for the higher Poisson brackets on tensor
densities on Sl.

Proposition 5.1. The higher Poisson (Lagrange) brackets on the tensor densities
f = /(τ)(Λ)λ, g = ^(τ)(ίίτ)μ are defined by the following formula:

m m— 1 m— 1

(5.6) {f,g}m = Σ(-1)*(7)Π< 2 λ + <) Π
t=0 is/b j=m— k
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Example. The infinitesimal term in the Moyal bracket is equal to

{/, 9}z = 2A(2A + 1)(2A + 2)fg'" - 3(2A + 1)(2A + 2)(2/x + 2)f'g"

+ 3(2λ + 2)(2μ + l)(2/i + 2)/V - 2μ(2/χ + l)(2/i + 2)f'"g.

Thus, if / g e Τ -ι, then {/ g}3 = 0. In this case it is also easy to compute
that {/ g}5 s 0. We note that if / g e Fo, then {f, g}\ = 0. We make
one more observation: i f / e Τ-\, g e To, then {f, g}\ - fg'+gf • Then

{f,9h = 0.

Remark 5.1. The Gel'fand-Fuks cocycle (5.3) is the "regularized" residue of
{/, g}3. In fact, let FE = reF, GE = r£G be homogeneous functions of degree
2 +ε on R2\{0} such that F, G e .F_i respectively are mapped t o / g under
the isomorphism (5.1). Then

Now we shall give several^examples.
The central extension t)\(Sl) of the Lie algebra biiS1) defines a Lie

algebra structure on the space >"_ι φ Τ\ Θ R. In the old notations we
have:

I
J

f
Js

r f9'"dr,
s1

f fa'dr,
s1

a, Vb] = 0

(where/, g e f"-\, a, b e Τy). The Lie algebra fj j(5*x) contains the Virasoro
algebra as a subalgebra^and the space Τ χ φ 1R is a module over it.

The Lie algebra f^OS1) is constructed analogously: it is also the semidirect
product of the^Vjrasoro algebra by some module. The remaining Lie algebras
of the series bm(Sl) are non-trivial extensions of the Virasoro algebra.

We allow ourselves to describe the Lie algebra \j^(Sl) explicitly; this is the
first non-trivial extension of the Virasoro algebra from our series. As a linear
space

We again introduce a convenient notation: the element (f,a,x,k,z) e fo(Sl) is
denoted by Uf + Va + Wx + Xk + ζ (we recall that ζ e IR is an element of the
centre, χ = χ(τ)(άτ)3 is a cubic differential, and k =^k(j)(dz)5 is a differential
of degree 5). The commutator in the Lie algebra (^(S1) is defined by the
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following explicit formulae:

[Uf, Us) = Utf-j., + — Χ,ΐΐΐ,ΐν.,πΐ,ΐν + ζ j i fgm dr,

[Uf, Va] = VJa>+fia + 2Μ^ΐΐΐα + ΑΊο/ΐπΛ»-ΐ5/ΐναΐΐ+ β /να + ζ I fa' άτ,

, Wx] = W).»+ 1 //. + 28X
/m r,

[Ve, Xk) = [Wx, Wy) = [W., Xk) = [Xt, X,} = 0.

The formulae (5.7) define a Lie algebra structure^ We note that the Lie
algebra (5.5) is a subalgebra of the Lie algebra ^ ( S 1 ) . We shall return to
this Lie algebra in Appendix 2 and we shall write down the analogue of the
Korteweg-de Vries equation corresponding to it.

Comments. The series of Lie algebras *}m{Sl) is the simplest of the series of
Lie algebras considered in this paper. While this is the simplest case, others
better demonstrate the connection ofjhe Virasoro algebra with Weyl
quantization: all the Lie algebras i)m(Sl) are constructed using the Moyal
bracket and they are all direct extensions of the Virasoro algebra.

5.4. The Lie algebra t)i.

We consider the standard symplectic space R 2 n + 2 (η ^ 1). The Lie algebra
fji is defined by the extension

o -»J i - bi - δ - o

by the cocycle ji(G, G) - ±{F, G}3.
We shall describe the commutator in f)i explicitly. As a linear space

hi = f) ( = Τ-ι) θ T\. Let (F, A) e fo (where F e Τ_,, A e ft). We
introduce a convenient notation, that is, we denote the element (F, A) by
UF + VA. Then

(5-8) [U,,VB] = V{rtB]l,

[VA,VB] = 0.

(The construction of the Lie algebra f>! is the standard construction of an
extension by a cocycle with values in a module over a given Lie algebra.) As
we shall see below, in the case « = 0 the restriction of the cocycle γι to the
algebra fj is identically equal to zero.
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5.5. The Lie algebra f)2-
We again consider the case η ^ 1. The algebra i)2 is the result of the
extension

0 - • Tt — F), -> fh — 0.

As a linear space I12 = -^-ι Θ ?\ θ ^3- We shall denote the element
(F, A, X) by UF + VA+ Wx. The commutator in 1)2 has the form

[UF,UG] = U{F>sh + ± V { , , O , 3 + ^ { F t

5.6. Contact Virasoro algebra on 5 s .
The Lie algebra ^("S 5) has a non-trivial central extension, defined by the
2-cocycle

c(UF,UG)=^f F{log r,G}sa Λ ω1,
ο: Jss

(5.9) c(UF,VB) =

c(VA,VB)= f

Thus, the cocycle (5.9) defines a Lie algebra structure on the space

This Lie algebra will be called the contact Virasoro algebra on S5. As in the
case of Sl a series of extensions of this Lie algebra^by the module of tensor
fields on S5 is defined: these are the algebras t)m(S5) (m > 2).

5.7. Associative algebras.
The first of the associative algebras ΛΊ is an extension of the algebra of
functions on S2n+l by the module of contact 1-forms. The cocycle defining
the extension is the usual Poisson bracket.

The algebra K2 is the extension of K\ by the module f 2.

Thus, as a linear space K2 = JFQ ® T\ θ Τ2· We denote the element
(F, A, X) e K2 by ΦΡ + ΨΑ + ΧΧ. The product in the algebra K2 is defined
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by the formula

*Χγ —

(recall that {·,·}0 coincides with ordinary multiplication).
We consider the case S3 (the space Τ2 will then coincide with the space of

differential forms of highest degree). The cocycle defining a central extension
of the algebra K2(1RP3) looks like

= \ f
= Ι

Js3

= / ΑΒαΛω.
Is3

We now consider two examples of the associative algebras Km(Sl). The
first of them is a one-dimensional central extension of the algebra of functions
C 0 0 ^ 1 ) . Let/, g e C°°(Sl), α, β e B3. We introduce an operation on the
space C^^S1) @ R (where R is the centre):

(5.10) {f,a)*{9,fl= (f-9,J

This elementary operation defines the structure of an associative algebra, but
not that of a commutative algebra.

We shall also describe the algebra

Φ, * tfe = * / e - 2Xf.a + ( fadr,
Js1

Φ/*Χ* = Χ/*,
Φα * * t = Φα4,

Φ α * X x = Xx * Xx = 0.
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CHAPTER II

DEFORMATIONS OF THE POISSON BRACKET AND '-PRODUCT ON AN

ARBITRARY SYMPLECTIC MANIFOLD

This chapter is devoted to the generalization of the construction of the
"•-product and the Moyal bracket to the case of an arbitrary symplectic
manifold. The existence theorem for the *-product in the general case was
proved by De Wilde and Lecomte [56] (see also [57]). We shall show that the
cohomological questions arising here inevitably lead to the idea of a graded
Lie algebra. The approach that we propose supplies a simple proof of the
De Wilde-Lecomte theorem.

Throughout this chapter we consider a manifold V of dimension In on
which a differential 2-form ω e Q2(F) is fixed. The manifold is said to be
symplectic if άω = 0, ω" φ 0 at each point of V. We denote by Ν the space
C°°(F) of all smooth functions on V and by S&{V) the Lie algebra of all
smooth vector fields on V. Each function / o n V is associated with a
Hamiltonian vector field Xf e 9I(F), defined by the condition

The Poisson bracket on V is defined by the following formula. Let f, g e N.
Then

{f,g)=w(Xj,Xg).

§6. Formal deformations: definitions

This section is not a detailed presentation of the theory of deformations of
algebras. A detailed survey of this topic can be found in the important
paper [16].

6.1. Let A be an associative algebra over a field κ of characteristic zero (we
are interested in the cases κ = R, C). Consider the algebra A[[t]\ ® κ y[[t]]
of formal power series in the variable t with coefficients in A.

A formal deformation of A is a bilinear mapping

μ,-.ΑχΑ-* A[[t]),

such that its formal extension, also denoted by μ,, is defined:

(where μο(α, b) = ab).
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A formal deformation is associative if

(6.1)

for any a, b, c e A.
Two formal deformations μ, and μ/ of A are said to be equivalent if there

exists a mapping

ρ((α) = β +

such that

(6.2) ri(M«).Pt(*)) = <fc(Mo,6)).

If μρ Ξ 0 for ρ > k, we say that μ, is a polynomial deformation of degree k.
On the other hand, we can define a formal deformation by replacing

formal series κ[[ί]] by the quotient x[[t]]/(tk+1 = 0). In this ease we shall
say that a deformation of order k is defined; in particular, for k = 1 this is
an infinitesimal deformation.

In an analogous way we define the concept of a formal deformation of a
Lie algebra.

Let 31 be a Lie algebra (over κ) with commutator [, ]. We set
9l[[i]] = 91 ® κ x.[[t]]. A formal deformation of 91 is a mapping

91 χ 21 -» a[[i]],

XxY~[X,Y)t,

that is bilinear, antisymmetric, has the form

and has an extension to 9ϊ[[ί]]:

» = 0

(with the condition cot-Jf, Υ) = [Χ, Γ]).
It is required that the operation [,], satisfy the Jacobi identity:

(6.3) [[X, Y)t, Z)t + p , X]u Y)t + [[V, Z)u X)t = 0.

Analogously we can define the concepts of polynomial deformation of
degree k, formal deformation of order k, and infinitesimal deformation. Two
deformations [, ] and [, ]/ are said to be equivalent if there exists a linear map

Φ, : » [ ()
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such that

A Lie algebra is said to be rigid if any deformation of it is equivalent to
the trivial deformation.

There exists a connection between the two types of formal deformations
discussed above. To each associative algebra A there is a corresponding Lie
algebra L{A): as a linear space L(A) coincides with A, and the commutator
has the form [a, b] = ab—ba. If μ, is a formal deformation of A, then its
antisymmetrization [a, b]t = μ,(α, b) — \i,(b, a) is a formal deformation of L(A).

6.2. Deformations of the Poisson bracket and ^-product.
For a symplectic manifold (F, ω) one can immediately define two
structures on the space Ν = C°°(F), an associative algebra structure (defined
by multiplication of functions) and a Lie algebra structure (defined by the
Poisson bracket). We consider the formal deformations of both these
structures simultaneously.

We define the space of multilinear mappings C from Ν into N, satisfying
the following properties:

(1) they are local: for arbitrary functions fu ..., fp e Ν we have

(2) they vanish on constants: if there exists an i for which/ = const, then

c(/i, ...,/„ .··,/„) = 0.
A theorem of Jaak Peetre asserts that any such mapping is defined by a

multilinear differential operator: for any χ e V there exists a local chart UBX
and functions a,·,...̂  on U such that, for all functions/ with support in U,

e(/i,...,/,)(»)= Ε ·ϋ...ΛΛΜ·ΛΑ(·).
0<ij <M

where 9Jy are differential operators on U of order ij > 0 for arbitrary
j = 1, ..., p. (This assertion holds for arbitrary manifolds, symplectic or not.)

Definition 6.1. A formal deformation of the associative algebra iV~ is called a
^-product if it is defined by a mapping

Ν χ Ν -» N[[t}}

of the form
oo

/ χ g ι- f*g = fg + £ μρ(/, g)t",

satisfying the conditions:
(1) the mappings μρ are local and are equal to zero on constants;
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Conditions (2) and (3) immediately allow us to define a formal deformation
of the Poisson bracket:

{/,*}. = jtU*t3 - 9*1) = U.9} £

The Jacobi identity for the operation {/, g}, is derived immediately from the
associativity condition (4.2) for the operation / * g.

t

Remark 6.1. There exists a general algebraic definition of the concept of
•-product. Let A be a Poisson algebra (that is, an associative algebra
equipped with a Lie structure a ® b -* {a, b} satisfying the Leibniz identity
{a, be} = {a, b}c + b{a, c}). Then a ""-product is defined as a formal
deformation of the associative multiplication in A which satisfies conditions (2)
and (3). This definition is often called a quantization of the Poisson
algebra A.

The Moyal product (2.10) is an example of a ""-product, defined on R 2 n + 2

with the standard symplectic structure. A significant fact if that locally the
Moyal product is a ^-product on any symplectic manifold V (up to the
equivalence defined above). For any point χ e V there exists a chart U with
Darboux coordinates on it (the symplectic form

in these coordinates) such that the ""-product on U is equivalent to the Moyal
product (see [33]). We see that this result can be used for the proof of an
existence theorem for the ""-product on any symplectic manifold.

The natural question—is a deformation of the Poisson bracket always
connected with some ""-product?—has a positive answer (at least, for an
important special case).

Definition 6.2. The Vey bracket [54] is a formal deformation of the Poisson
bracket, for which the operations Cp are defined by bilinear differential
operators of order at most 2p + 1.

Proposition 6.1 (Lichnerowicz [33]). For any Vey bracket on a symplectic
manifold there exists a ^-product such that the Vey bracket is its anti-
symmetrization.

Before we proceed to a systematic study of formal deformations of the
Poisson bracket and ""-product, we consider conditions (6.1) and (6.2)
(existence conditions) as a first approximation. Isolating the terms of order 1
(the coefficients of t), we obtain

μι(ο6, c) + μχ(ο, b)c = μχ (α, 6c)
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where the symbol \s denotes the cyclic permutation of Χ, Υ, Ζ. Exactly the
same conditions for the equivalence of two formal deformations give the
following equalities in the first order:

respectively.
From this one can immediately obtain cohomological conditions on the

infinitesimal terms of formal deformations: the operation μ( is a \-cycle in the
Hochschild complex of the algebra A, and for equivalent deformations μι —μ/ is
a l-coboundary (that is, the cocycles μι and μ{ define the same Hochschild
cohomology class of A). Analogously, C\ is a cocycle and C\ — C{ is a
coboundary in the Chevalley-Eilenberg cohomology of the Lie algebra 91.

A convenient method of working with similar cohomological questions
connected with formal deformations leads to graded Lie algebras, which will
be the subject of the next section.

§7. Graded Lie algebras as a means of describing deformations

In this section we give a brief description of the technique proposed
recently by De Wilde and Lecomte. An explicit presentation of the details can
be found in [51] and [57].

7.1. Graded Lie algebras and associated structures.

Definition 7.1. A graded Lie algebra is a space equipped with a grading

L* = Θ,εΖ L' and a bilinear operation

·,·]: L ® L —• L ,

satisfying the following conditions:

(1) AeLa,B€Lb=*{A,B]eLa+b,

(2) A€la,BELb=> [A,B] = (-l)ab+l[B,A]

(antisymmetry);

(3) A£La,3<ELb,C(ELc=> £ (-1)"[[A,B],C\ = 0

is the graded Jacobi identity.

Remark 7.1. If Ζ is replaced by Ζ 2 in the definition, then we obtain the
definition of a Lie superalgebra.

Definition 7.2. An associated structure on a graded Lie algebra L* is an
element c e L1 that satisfies the condition [c, c] = 0.

We define the cohomology related to this object. We consider the operator

dc:L'-*L', dc{X) = [c,X].
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It is easy to check that 9C • 3C = 0 (which follows from the Jacobi identity).
This allows us to consider the cohomology space H?(L), defined in the usual
way:

Moreover, the commutator in the algebra L* can be restricted to cocycles,
which turns the space H*(L) into a graded Lie algebra.

This formalism turns out to be suitable for the study of deformations: we
consider a deformation of c e L1, which is a family ct e L1, depending on a
parameter t, with the conditions c0 = c, [ct, ct] = 0. It is possible to obtain
different variants of deformations by imposing different conditions on the
dependence of ct on the parameter. In this paper we shall consider formal
deformations c, e L'[[i]] = Ll ® κ κ[[/]] and understand the condition

(7.1) [*,*] = Ο

as an identity in the algebra £*[[i]] = L* ® κ κ[[ί]]. It is not complicated to
obtain a concept of a formal deformation of order k, replacing L*[[i]] by
L*[[t]\l(tk+1 = 0) (a deformation of order k = 1 is termed "infinitesimal").
In exactly the same way we can consider polynomial deformations and
analytic deformations, as was done above.

It is natural to assume a deformation c, to be trivial if it is obtained by a
"change of coordinates" in L1. More precisely, we consider a family Φ, e L°,
Φο = Id, and the deformation

(7.2) * = [β,Φ,].

Condition (7.1) gives a chain of identities

(7.1') 2[c,c3] + [c1,cl] = 0)

while condition (7.2) gives

(7.2') c, = [ c ^ s ] ,

The first identity of (7.1') means that C\ is a 1-cocycle relative to 9C. The
first identity of (7.2') means that this cocycle is trivial.

Thus, infinitesimal deformations correspond to the cohomology classes c
in Hc(L). The second equality of (7.1') can be written in the form
9c(c2) = j[ci, c{\. Thus, the cohomology class of [ci, c\\ in H2(L) is an
obstruction to the extension of an infinitesimal deformation to a deformation
of order 2. The succeeding identities of (7.1') can be written in the form
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where Pn{cu ..., cn_i) is an element of L2. For example, Pi(cu c2) =
= 5[ci,C2] +5[c2,ci], and so on. It is not hard to see that this element is a
cocycle. Thus we shall successively obtain a series of obstructions to the
extension of an infinitesimal deformation to a formal deformation.

Thus, if the space HC\L) classifies infinitesimal deformations, then the
computation of obstructions to extension consists in studying the commutator
on cohomology:

In particular, if HXL) = 0, then all deformations are equivalent to a trivial
deformation; if HXL) = 0, then any infinitesimal deformation extends to a
formal deformation.

7.2. Graded cohomology.
There are cases when a formal deformation exists for any associated structure
c e Ll and we can speak about a universal deformation. We need the idea of
graded cohomology of the algebra L*.

Let CjjXL*, L*) be the space of ^-linear forms of cochains on L* with
values in L*, satisfying the following condition (of skew-symmetry):

c(...,A,...,B,...) = (-iyb+1c(...,B A,...).

We define a grading on this space: the number γ is the degree of the cochain
c e C§r(L*, L*) if

The definition of the differential dq : C£r(L*, I*) -> C| r

+ 1(L*, L*) is
analogous to the case of Lie algebras:

dc(Au...A,+1)= Σ (-l)r+E»raiarATc(All...,AT,...,Ai+1)

+ Σ {-l)T+'-1+ar-c([Ar,A.],Al,...,Ar,...,A,,...,Ai+1),
I<r<«<$+1

where

The only modification is a rule according to which the coefficient ( — l)ab+l

arises in a permutation A of degree a and Β of degree b. This cohomology
was proposed by Braconnier and Leites [32], who only considered the case of
Lie superalgebras. A second grading on the cohomology space H^r(L*) is
defined by the grading in the algebra L*. The corresponding bigraded
cohomology space is denoted by Hgr(L*)r.
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For every associated structure c on L* we define a mapping

associating

with each cocycle ω e H%r{L*)r_p. A direct check shows that this mapping
acts on cohomology (recall that c e L and [c, c] = 0).

In particular, for r = 1 we obtain

The main result of this construction that we need is the following.

Assertion 7.1 (see [50], [51], [56], [57]). The cohomology classes of the image of
yl induce infinitesimal deformations of associated structures on L*, which always
extend to formal deformations.

In this case we can speak about universal deformations. This result also
proves the fact that the image of yr

c is contained in the centre of the Lie
algebra H?(L) (see [30] for the details). An example of this construction can
be found in [50].

We give two examples of graded Lie algebras, which will be used in what
follows (see [51] for subsequences and a set of analogous examples).

7.3. The algebra M*(E) (see [57]).
Let £ be a linear space, and MP(E) the space of (p + l)-linear mappings from
E®p into E. In this case,

M*(E) = φ Μ*(Ε)

(by convention M~\E) = E). Let A e M\E), Β e M\E). We define
i(A)B e Ma+b(E) by the formula

b

i ( A ) B ( X i , • · · , X a + b ) = Χ ) ( - 1 ) * α · Β ( Χ ο , • · · - X k - \ , A ( x k , ..., X k + a ) , •••, X a + b ) -

We set AAB = i(A)B+(-\)ab+li(B)A. We obtain a graded Lie algebra
structure on M*(E).

Let c e M ' ( £ ) be a bilinear mapping from Ε (g> Ε into E. Then

c Δ c(x0, Χι, xt) = 2 [c(c(x0, *i), Xj) - c(x0, c(xu x 3 ) )] .

Therefore cAc = 0 if and only if c defines an associative multiplication on E.
Thus, the associated structures on M*(E) are the associative algebra

structures on the space E. The formalism given above, applied to the algebra
M*(E), gives a deformation theory of associative algebra structures on E.
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We denote by A the Lie algebra defined by an associative multiplication c
on E. The cohomology of M*(E) associated with c is identical to the
Hochschild cohomology of A with coefficients in the adjoint representation.
As a result we obtain (after re-indexing) the following isomorphism:

The role of Hochschild cohomology in the deformation theory of
associative algebras is well known thanks to the work of Gerstenhaber (see
[15], [16]). A detailed study of Hochschild homology and cohomology can be
found in the book of Loday [35] concerning cyclic cohomology.

7.4. The Richardson-Nijenhuis algebras A *(£").
Again let £ be a linear space. We denote by AP(E) the space of skew-
symmetric (/?+l)-linear mappings from E®(-p+r> into E. We consider the
space

A*(E) =
p = - l

where A ~ X(E) = E. A Lie algebra structure on A*{E) can be defined via the
Lie structure on Μ*(E). Let α : M*(E) -> A*(E) be the antisymmetrization.
If A e Aa(E) and Β e Ab(E), we set

All the properties of a graded Lie algebra are easily verified. In particular, if
c e Al(E), then [c, c] e A2(E) is defined by the formula

The equality [c, c] = 0 means in this case that the bilinear antisymmetric
operation c satisfies the Jacobi identity. The associated structures on A*(E)
therefore coincide with the Lie algebra structures on E. We now see that the
cohomology of a Lie algebra with values in the coadjoint representation is well
adapted to the study of its deformations. Indeed, let 91 be a Lie algebra
defined on the space Ε via a structure c satisfying [c, c] = 0. We will obtain
an isomorphism

HP

C{A'{E)) =

The connection between deformations of a Lie algebra and its cohomology
was discovered in the fundamental papers of Richardson and Nijenhuis (see,
for example, [42]). (Some authors denote the operation X -• [X, X] from
Hl

c(A*(E)) into Η?(Α*(Ε)) by Sr)
In cases when Ε is infinite-dimensional we usually need to consider some

topology on the spaces of mappings. We are interested in the case when
Ε = Ν, where Ν is the space of smooth functions on some manifold V. We
require that the multilinear mappings from Ε to Ε satisfy the locality property
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that was defined above. The graded Lie algebras defined on these spaces are
denoted respectively by Af^N) and M\%c(N). (It is easy to check that the
locality property is preserved under commutation in the graded Lie algebras.)
For technical reasons we shall also consider operations from N®p into N,
vanishing on constants (see above) and corresponding to multilinear
differential operators. The corresponding graded Lie algebras are denoted by
Aic,nc(N) and AfiSc,nc(iV). The spaces Aioc(N) = M?OC(N) are identified with
algebras of differential operators on the manifold V. (We note that some
authors have considered other structures on these spaces, in particular,
Hopf algebra structures.)

§8. Cohomology computations and their consequences

Here we give some results relating to the computation of cohomology,
which will be used to study deformations of the product and Poisson bracket
on the space of functions on a symplectic manifold.

8.1. Hochschild cohomology of the algebra of functions.
We return to the study of the algebra of functions Ν = C°°(F) on a
manifold V. Let c denote the product structure in N. The study of local
deformations of c is connected with the computation of the spaces

HfAM:oc(N)) = HH£l(N, N) for ρ = 1,2.

(The Hochschild cohomology considered here is also local: it is constructed
from cochains satisfying the locality condition.) We let ΩΡ(Κ) denote the
space of covariant tensor fields of degree ρ on V.

Theorem 8.1. HHf^N, Ν) =

This theorem was proved independently by Hochschild, Kostant and
Rosenberg (see [35]). It is valid for an arbitrary manifold V. We note that
these authors formulated the theorem in a different form. In the form given
above the theorem was rediscovered independently by Cohen, Gutt and
De Wilde.

Let Λ be a skew-symmetric tensor of degree ρ on Γ (a ^-vector field). We
define a Hochschild />-cochain on Ν by the formula

Λ ( / ι ν · · , / „ ) = (Λ.4Λ Λ •••Ad/P).

This defines a mapping Clp(V) ->• CH&JiN, N). It is easy to check that Λ is
a cocycle. The theorem means that the corresponding cohomology classes
contain all the Hochschild cohomology. On the other hand, this means that

Remark 8.1. The graded Lie algebra structure on M*(N) induces a graded
Lie algebra structure on Cl*(V), which coincides with the Schouten-Nijenhuis
bracket on ilt(V).
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In the case when V is a Poisson manifold, we can naturally take Λ to
be a bivector defining the Poisson bracket: {/, g} = (A,dfAdg). Then
Λ e Q2(F) (and has degree 1 relative to the grading in Μ*(Ν)). The resulting
cohomology, associated with Λ, is called Λ-cohomology (it was proposed
independently by Brylinski and Lichnerowicz). In the case when Λ has
maximal rank, which corresponds to the Poisson bracket on a symplectic
manifold, Λ-cohomology reduces to ordinary cohomology of the manifold V.

8.2. Cohomology of the Poisson Lie algebra on a symplectic manifold.
Let (V, ω) be a symplectic manifold, and c : / ® g -> {/, g} the Poisson
bracket on it. We regard c as an element of the graded Lie algebra
Aioc,nc(N) : c e AJOC^C(N), where [c, c] = 0. The associated cohomology
coincides with the cohomology of the Lie algebra Ν with values in Ν
(see [12]):

This cohomology in turn coincides with the cohomology of the Lie
algebras of Hamiltonian vector fields on F> having a unique Hamiltonian
(exact Hamiltonian fields). In fact, the Lie algebra Ν splits into a direct
sum: Ν = Ham(F) φ R, where Ham(F) is the Lie algebra of all exact
Hamiltonian fields on V and R is the space of constant functions. (For the
basics of the cohomology theory of algebras of vector fields see [12].) The
problem of computing the cohomology of the Lie algebra Ham(F) in the
general case is as yet unsolved. Here we give computations of H'(N, N) for
i < 3 and a geometric interpretation of all the cohomology classes that we
find.

We note that H°(N, N) = IR corresponds to the space of constant
functions.

The space Hl(N, N) is also easy to compute. The derivations of the Lie
algebra iV are the vector fields that commute with Λ. They satisfy the
condition Lyco = 0 and thus derivations of iV correspond to Hamiltonian
vector fields on V. The exact sequence

0 -» Ham(K) -+ Vect(V» — ff£R(V) — 0

(where Vect(F, ω) is the Lie algebra of Hamiltonian fields on V; the third
mapping has the form X\-^> [ϊχώ\) immediately gives the answer:(1)

(1)The authors thank the referee for pointing out the paper "On Poisson manifolds and the
Schouten bracket" (Funktsional. Anal, i Prilozhen. 22:1 (1988), 1-11. MR 89k:58011.
= Functional Anal. Appl. 22 (1988), 1-9) by Yu.M. Vorob'ev and M.V. Karasev, and
also the book "Non-linear Poisson brackets. Geometry and quantization" (in Russian)
Nauka, Moscow 1990, by Karasev and V.P. Maslov, in which analogous results were
obtained.
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This equality can be generalized. We consider the inclusion of the space of
differential />-forms on V

defined as follows: with each p-fona σ one associates a cochain
<5(/l, ·.. ,fP) = σ(Α/,,... ,X/p). A well-known property of the Lie algebra of
Hamiltonian vector fields is the formula

da = [c, σ)

which allows us to obtain an inclusion Hp

OVi(V)^ HP(N, N).

Proposition 8.1 (Gutt, Lecomte, and De Wilde).

The one-dimensional space complementing the de Rham cohomology is
generated by an additional class, which by tradition is denoted by Sr· We
describe it in detail. We denote by P(F) -^ F the frame bundle over the
manifold V. We fix an arbitrary linear connection θ in this bundle. Let Χ, Υ
be vector fields on V, and Χ, Υ horizontal vector fields on P(V) (which are
obtained by lifting X, Y). The differential 2-form on P(V) of the form
Tr(LjjQ Λ LyQ) is projected onto the base (this fact is easy to check). The
mapping

(X,Y) ~ <i>r{X,Y) = TriL^O Λ L90) <E tf(V)

defines a 2-cocycle on the Lie algebra Vect(F) of all vector fields on V with
values in the space Ω2(Κ) (which is a Vect(F)-module relative to the operation
of Lie derivative). The cohomology class [ΦΓ] in H2(Vect(V), Q2(F)) does not
depend on the choice of the connection Θ.

Now if V is a manifold on which a Poisson bracket is defined, then we can
define a 2-cocycle on the Lie algebra Ν with values in N:

(8.1) ( )

The corresponding cohomology class of Hue(N, N) is also denoted by Sp.
This cohomology class is defined by any Poisson manifold V without any
assumption of the non-degeneracy of the Poisson structure. It is an amusing
exercise to check that

in the case when V is the standard symplectic space, that is, Sj- coincides with
the cocycle defining the Moyal deformation (·) on the infinitesimal level.

This class admits a generalization of arbitrarily high degree. If
Τ: gl(?i, IR)®^ -* IR is an invariant skew-symmetric mapping, we set
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Thus, we define a cohomology class in

JF(Vect(V), Ωρ(ί0).

This cohomology class (in a somewhat different form) was proposed by
Gel'fand in his 1970 International Congress talk at Nice [13].

The associative multiplication on Ν defines a product on cohomology:

(8.2) Hp(N,N)^H9{N,N)-*Hp+g{N,N).

In particular, multiplication by Sp e H2{N, N) gives a mapping of
H\N, N) = Hh>K(V) into H3(N, N).

The complete answer for the space H3(N, N) depends on the value of the
first Pontryagin class of the manifold V, pi(V) e H^

Proposition 8.2.

H3(N, N) = Hl

DR(V) φ H3

DR(V) if Pl(V) φ 0,

H3(N, N) = HlK(V) φ HS

DK(V) ffiR if Pl(V) = 0.

The cohomology class corresponding to the one-dimensional space in the case
when Pi(V) = 0 is obtained by transgression (see [57] for a detailed proof and
construction).

Analogous questions in the case of an arbitrary Poisson manifold have
been considered by Maslov and his students (see the footnote above and
also [50]). The computations for the case of a linear Poisson structure
on a dual space to a Lie algebra were carried out in the dissertation of
Melotte [40].

We again consider the Richardson-Nijenhuis bracket:

Hi(N,N)®Hi(N,N)-+H*(N,N),

c[ Ο c, i-» [[d, cj]].

It is easy to verify that if c, = [ω,] for ω, e Q2(F), then [[ci,C2]] = [{δ>ι,ω2}],
where {ωι, ω2} is the graded Lie algebra bracket on differential forms, defined
for all Poisson manifolds. Thus we shall show that the image of the mapping
(8.3) lies in the component Hl,R(V)^H3(N,N). This proves a result of Vey
[54].

Proposition 8.3. If / / D R C O
 = 0, then any infinitesimal deformation of the

Poisson bracket can be extended to a formal deformation.

In the case of the standard symplectic space R2n+2, H2{N, N) = R,
H3(N, N) = 0, which immediately proves Theorem 2.2 on the uniqueness of
the Moyal deformation. The same property remains valid for the Moyal
product.
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Proposition 8.4 ("Quantum Darboux theorem"). Any ^-product on the standard
symplectic space K2""1"2 is equivalent to the Moyal product.

We now proceed to a detailed study of deformations of the associative
product of functions on a symplectic manifold.

§9. Existence of a *-product

We give two approaches to the solution of this problem.

9.1. Construction via a covering.

The idea is very natural: cover a symplectic manifold by Darboux charts,
take the Moyal product on each chart and, using the preceding proposition,
glue each pair of Moyal products on each intersection.

Let (Ua, φα) be a covering of V by Darboux charts such that all the
intersections Uav,,at = Uai Π ··· Π Uah are contractible. We denote by
N,(Ua) the algebra of formal series in the variable t with coefficients in the
algebra N(Ua) of smooth functions on Ua. Let Ma denote the Moyal product
on Nt(Ua) and Pa a formal deformation of the Poisson bracket that is
compatible with Ma.

There is an isomorphism

Ta0 : (Nt(Ua0, Pa) -> (Nt(Ua0), Ρβ),

and it can be chosen so that Γαβ = Id+tT^, where Γ«β e Aioc^NiU^t]]).
In order to define a globally defined deformation, it is necessary that Ta$
satisfy the condition Γα ΡΓβγΓγ α = Id (Cech cocycle). A direct attempt to
satisfy this condition a priori encounters an obstruction in the third (Cech)
cohomology group of the manifold V. (This obstruction was discovered by
Vey; see Proposition 8.3 above.) A method of overcoming these difficulties,
based on an idea of Omori et al, was proposed by Lecomte and De Wilde.
The idea consists in the study of automorphisms of the Lie algebra
(ΛΓ,(ί/α), Ρα) and its derivations (as before we restrict ourselves to derivations
satisfying the locality condition).

Definition 9.1. A mapping Τ : Nt(Ua) -> N,(Ua) is said to be formal if it is
obtained by formal extension of a mapping of N(Ua) into itself:

* = 0

Proposition 9.1. All the formal local derivations of the algebra Nt^Ua) are
inner: they are all given in the form

where ft e Nt(Ua).

This property is no longer true if we remove the assumption of "formality".



Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields 175

Theorem 9.1 [57]. There exists a derivation of the Moyal bracket which is not
inner and is such that all the local derivations of N,(Ua) are represented in the
form Τ = λθ + adz,.

This derivation is defined in the following way: for any point Λ:0 e Ua we
consider the Euler field

and denote the corresponding Lie derivative by L^x . Then
x

(9.1) e =

The fact that θ is a derivation of the Moyal bracket and the independence
from the choice of the point x0 are both easily verified.

Thus, we can consider the extension of the Lie algebra (Nt(Ua), Pa) (of the
Moyal bracket defined locally in the domain Ua) via the outer derivation Θ.

Remark 9.1. Recall that if © is a Lie algebra satisfying the condition
[©, ©] = © and H\(5, ©) := Ext(©, R) = R, then there is a well-defined
extension

0 _> (5 _> © _» |R _+ 0

with commutator

[X + Χθ, Υ + μθ] = [Χ, Υ] + ΧΘ{Υ) - μθ(Χ),

where θ is an outer derivation (representing a non-trivial cohomology class in
#'(©, ©)). It is easy to show that i/^©,©) = 0, that is, all the derivations
of the Lie algebra © are inner.

In the case under consideration the resulting extension of the Moyal
bracket has the following form:

Definition 9.2. A regular automorphism of order k is an automorphism
Τ of the Lie algebra (Nt(Ua), Pa) of the form Τ = Id+tkT', where
T' : Nt{U^) -* Nt(Ua) is a local mapping (having the form of a formal series
in t), each term of which satisfies condition (1) of §6.2.

Lemma 9.1. A regular automorphism of the Moyal bracket can be written in
the form

(9.2) T ^ e x p ^ a d , ) ,

In other words, TO

j>=0 V '

where adi(g) — { f g}t is the Moyal bracket of the functions f and g.
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A regular automorphism of order k of the Moyal algebra (Nt(Ua), P a)
extends in a unique way to an automorphism of the Lie algebra At(Ua) of the
form Τ = exp(tk &dAf), where ad^yis the adjoint action of/ in j4f(£/a).

Assertion 9.1. All the automorphisms of the Lie algebra At(Ua) are inner, and
an arbitrary regular automorphism of A,(Ua) of order k can be represented in
the form (9.1).

This fact is a simple consequence of the triviality of the first cohomology
space of A r

9.2. Global construction.
For each pair of domains Ua, t/β C V there exists an isomorphism of Lie
algebras

Tafi:(Nt(Ua),Pa)-^(Nt(Ufi),P0)

(by Proposition 8.4), having the form Γαβ = Id+tT^- The restriction

^αβ ι ί/α η ί/ρ c a n o e extended to an automorphism

which is regular and of order 1. The composition

is a regular automorphism of order 1 of the Lie algebra A(Uafr). All the
automorphisms of A(Uafr) are inner. This means that there exists a

e N,(U^) for which

The set qafr defines a Cech cocycle corresponding to the covering (Ua).
The cohomology class that it defines is trivial (which follows from
Assertion 9.1). In other words, the Cech cocycle qafr that arises is a
coboundary. This fact means that the automorphisms β α Ρ can be replaced
by automorphisms Q a P such that βαβ γ = βαβββγβγα will be a regular
automorphism of order 2. Continuing these arguments, we eventually arrive
at a series of isomorphisms ζ?άβ

 : Λ<(^αβ) -»· At(Uap) satisfying the condition
βόβββγβγα = Μ which also remains valid under restriction to Nt(Uafr).
Thus, we shall obtain a series of isomorphisms Γάβ : Ν,(υα$) -* Nt(Uap) with
the condition ΓάρΓβγ7^α = Id.

This argument proves the existence of a globally defined deformation of the
Poisson bracket on a symplectic manifold. Locally in each Darboux chart Ua

this deformation coincides with the Moyal bracket. Analogous arguments are
applicable for the proof of the existence of a *-product defined on the whole
symplectic manifold V, which coincides locally with the Moyal product.

Remark 9.2. A geometric interpretation of the construction of the set of
extended algebras At(U) can be given in terms of the Weyl fibration.
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We consider the fibration of symplectic frames over the symplectic manifold V.
The resulting algebra coincides with the corresponding Weyl algebra. It can
also be interpreted as the universal enveloping algebra of the Heisenberg
algebra.

This construction can be considered from the point of view of the concept
of a "quantum manifold" (in the terminology of Cartier) associated with an
arbitrary symplectic manifold. It is likely that quantum groups should arise in
this context in a natural way.

9.3. Construction via graded cohomology classes.
This construction was used in the original proof of De Wilde and Lecomte [56].
Its first step consists in the construction of graded cohomology classes of
the algebra A^cnc(N) (recall that this denotes the graded Lie algebra of
multidifferential operators on V; see §8). Here we follow the presentation
of [57].

Definition 9.3. Every closed 2-form σ e Ω2(Γ) corresponds to a 2-cocycle of
weight —1 : ©„ e C^LiiAy^^N)). This cocycle is defined locally: on every
neighbourhood U C V there are a 1-form oĉ  such that σ\ν = da\v and a
vector field Xv on U such that σ = ά{ίΧυω). We consider a mapping defined
on the space of cochains on the Lie algebra Vect(F) with values in N:

such that μ*(ο)(/ι, ...,fp) — c(X/t, ..., Xf). We note that μ* commutes with
the differential and there is a

that inverts μ* : μ*τ = ^ A )

Let A e Au>c,nc(N) and Β e A^c,nc(N). Then

ΘΙ{Α,Β)\σ = μ*[ί(Χυ)τ[Α,Β]\ - (-ΐγ\μ'ΐΧστ(Α),Β] -

It is not hard to verify that in this way we obtain a 2-cocycle on the algebra
The mapping [σ] •-• [Θ^] gives a well-defined linear mapping

We shall use this 2-cocycle 0 ^ to construct formal deformations of the
Poisson bracket (analogous to what was done above). Thus we will construct
a so-called universal deformation.

The Poisson bracket on V can be understood as an element of the algebra
A\Zc,nc(N). We denote this element by

We associate the cocycle Θ^ with the operator
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by the formula

ΙΤ(Α):=θτ

σ{Α,Ρ).

We shall indicate a method of obtaining a formal deformation of Ρ (that is, of
the Poisson bracket on V) as a solution of some formal differential equation.

We consider a formal series Pt e ^locncC^Ott']] such that Po = Ρ and the
following (formal) first-order differential equation holds:

(9.3) f.d . Λ . 1.

For the first three terms we obtain

(9.3') ^

(9.3") 2Λ+θ;(Ρ,Λ) = 0,
(9.3'") 3P, + Θ;(Ρ, ρ,) + Θ;(ΡΧ Ι PO = o.

The first relation holds automatically. The second can be written in the form
(Z>r+2)P, = 0. For (9.3") to hold it suffices to take Ρ, = μ*(Ω), where Ω
is an arbitrary closed form (see [57], p. 929), which is easy to verify. Relation
(9.3'") has the following form: (Dr + 3)P + ^(PU Px) = 0. A formal
verification easily allows us to see that

is a solution of (9.3'"). Since (Dr + 3)(Sr) = 0, the general solution of
equation (9.3'") is

(9-4) P, = XS$ - 1-{DT + 1)θ;(Λ, Ρχ).

Assertion 9.2. The operator (Dr + k+l) is invertible for k > 2.

The proof is an easy check.

Corollary. Equation (9.3) has a unique solution for any fixed pair

Λ = μ·(Ω), Ρ5 = -\{

Remark 9.3. Formula (9.4) classifies the deformations of the Poisson bracket
on the infinitesimal level. The corollary stated above is actually a theorem on
the extension of an infinitesimal deformation to a formal deformation.

We shall now show that a solution Pt of equation (9.3) is in fact a formal
deformation of the Poisson bracket. This means that the following relation (in
the Lie algebra Α^ηε(Ν)) holds:
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We prove this by induction on k. We assume that it holds on level k— 1.
Since

= Q'tt([Pl,Pt),Pt),

and since Θ£ satisfies a cocycle condition, on level k we obtain

thus,

(Dr + k + 2)([Pt,Pt]k) = 0.

Now we obtain [Pt, Pt]k = 0 from Assertion 9.2, as required.

Remark 9.4. Deformations with the condition λ = 0 in the form (9.4) were
studied in detail in [31]. In exactly the same way we can consider
deformations with the condition Ω = 0. In this case all the odd-numbered
terms Pik+1 vanish; on the infinitesimal level the deformation is defined by
the cocycle Sp- Thus, we are led to the universal deformation that we have
already considered in §9.1.

The proof of the existence of a ""-product that is compatible with a given
deformation of the Poisson bracket can easily be obtained in an analogous
fashion. We limit ourselves to a reference to [33].

Remark 9.5. A symplectic manifold V is said to be homogeneous if there exists
a vector field X on it such that [X, P] = —P. It turns out that we can
obtain the homogeneity of every term defining the deformation of the Poisson
bracket (see [34]). This property is decisive for the generalization of the
results of Chapter I to the case of an arbitrary contact manifold.

CHAPTER III

EXTENSIONS OF THE LIE ALGEBRA OF CONTACT VECTOR FIELDS ON AN

ARBITRARY CONTACT MANIFOLD

In this chapter we generalize the results of Chapter I.
We recall that an odd-dimensional manifold M2n+l is called a contact

manifold if it has a fixed distribution of hyperplanes in the tangent space that
is non-degenerate at every point. These hyperplanes are called contact planes.

Locally a contact distribution can be defined using a 1-form α on Μ that
vanishes on the contact planes. The form a can be chosen so that the
(2n+l)-form <xA(d<x)n, defined locally, is non-degenerate. The form α is
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defined up to multiplication by a non-zero function at every point. It is called
the contact form.

All contact manifolds are locally diffeomorphic to each other. There exist
local coordinates on Μ (contact Darboux coordinates) in which the contact
structure is defined by the 1-form

ί dt/i - y, dxi
d zΣ

§10. Lagrange bracket

10.1. Symplectization.
There is a canonical procedure for constructing a symplectic manifold
associated with a given contact manifold M2n+1. It was proposed by
Arnol'd [1] (see also [2]) and is called symplectization.

The contact distribution in the tangent bundle TM defines a dual line
subbundle of the cotangent bundle:

ScTM

Μ

(the fibre Sm over a point m e Μ consists of the covectors in T£ Μ that
vanish on a contact hyperplane in TmM).

A section of the bundle π : S -*• Μ is a 1-form on Μ that vanishes on the
contact distribution (not necessarily non-degenerate). We shall call the space
of all sections Γ(5) the space of contact forms on M.

In the total space of the bundle S a canonical symplectic structure is
defined, the restriction of the standard symplectic form on T*M. Thus, S is a
symplectic manifold. It is called the symplectization of M. The symplectic
form on S is exact: it is a differential 1-form σ on S, defined as follows.
The value of the form σ on a tangent vector υ e Ts S, applied at a point
s e S, is equal to the value of the vector s on the projection π,υ:

σ,(ν) = s{Tct ν).

(The form σ is nothing but the restriction to S of the standard Liouville
1-form on T*M.)

10.2. Contact tensor fields.
We consider the line bundle A2n+lT*M -> M. There is an isomorphism
between this bundle and a tensor power of S.

Proposition 10.1. The bundle A2n+lT*M is isomorphic to the bundle 5® ( " + 1 ) .

We give an equivalent formulation.
We denote by fy{M) the Lie algebra of all vector fields on Μ that preserve

the contact structure (contact vector fields).
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Note first that the group of all diffeomorphisms of Μ that preserve
the contact structure acts on 5. (Indeed, every diffeomorphism of Μ lifts
to a diffeomorphism of the cotangent bundle T*M, and the contact
diffeomorphisms obviously preserve the subbundle S C T*M.) Thus, the
space of sections of S (and hence those of S®n) is a module over the group
of contact diffeomorphisms of Μ (and hence, over the Lie algebra of contact
vector fields on M).

Secondly, note that multiplication by scalars is defined on the bundle space
of S. The action of the group of contact diffeomorphisms obviously
commutes with multiplication by scalars. Thus, a space of homogeneous
functions on S is defined. We denote the space of functions that are
homogeneous of degree —λ by F\(M) (compare §3). The space ^χ(Μ) is an
i)(M)-module.

Proposition 10.1'. The following three spaces are isomorphic as t)(M)-modules:
a) the space of contact l-forms;
b) T\{M) (the space of homogeneous functions on S of degree of

homogeneity — 1);
c) the space of tensor densities of Μ of degree l/(«+ 1).

Proof. Let G : Μ -*• Μ be a contact diffeomorphism and α a contact
1-form. Then G*(a) is also a contact 1-form, that is, it differs from α by
multiplication by some function (say mG):

G*Q = mGa.

The forms of degree 2n +1 on Μ are proportional to the volume form
Ω = α Λ(</α)π. Then G*Q = mGa A {dmGv)n = (mG)

n+lQ. Therefore a
differential form on Μ of highest degree transforms like the («+ l)-st power of
the contact form α (that is, like a section of the bundle S®{"+1)). From this
we get the isomorphism between the spaces a) and c). The isomorphism
between the spaces a) and b) is obvious.

Corollary 1. The space F\(M) is isomorphic to the space of tensor densities on
Μ of degree λ/(« +1).

Corollary 2. There exists a natural isomorphism

(10.1) /·λ(Μ)2/· ( η + 1 )_λ(Λ/).

Definition. The Poisson bracket on the symplectic manifold S defines an
operation

(10.2) { , } : ^ λ Θ ^ - » ^ λ + ( 1 + ι

on the space of tensor densities on M. This operation is called the Lagrange
bracket. In Darboux coordinates on Μ it is defined by formula (3.5).
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Remark 10.1. a) The space Τ -ι(Μ) is a Lie algebra relative to the
bracket (10.2). This Lie algebra is isomorphic to i)(M). Indeed, the space of
homogeneous functions of degree 1 on Μ forms a Lie algebra isomorphic to
the Lie algebra of all Hamiltonian vector fields on Μ that commute with
multiplication by a scalar, and a homogeneous Hamiltonian function
corresponds to a homogeneous vector field.

b) For μ = — 1 the operation (10.2) defines the Lie derivative along a
contact vector field of a tensor density of degree λ/(η +1).

Thus, the Lagrange bracket on a contact manifold is defined on the space
of tensor densities (see also [1]). It satisfies the Jacobi and Leibniz identities.
The tensor densities of degree — l/(«+l) form a Lie algebra which is
isomorphic to the Lie algebra f)(M) of all contact vector fields. They are
called contact Hamiltonians.

§11. Extensions and modules of tensor fields

11.1. Extension of the Lie algebra i)(M) by the modules Τ χ.
We construct extensions of the Lie algebra of all contact vector fields on Μ
by the modules of tensor fields. These extensions are connected with the
deformation of the Poisson bracket on the symplectization S, which was called
the universal deformation in Chapter II. The scheme of constructing these
extensions repeats the scheme of §3.

Theorem 11.1. There exists a formal deformation of the Poisson bracket on the
symplectic manifold S

(11.1) {F,G}t f

such that every operation P^, restricted to homogeneous functions, defines a
mapping

(11.2) Pk-Fx®?»·^ ^Λ+p+it+i ·

Proof We start with the first term. It is necessary to show that there exists a
cocycle Px on the Poisson algebra N{S) such that Pi : Τ χ ® Τ μ -*• ?χ+μ+3.

Lemma 11.1. The cocycle Sr (defined in §8.2) satisfies the condition

This lemma was first proved by Lichnerowicz in [34] using the choice of a
suitable linear connection on S. It is also not hard to verify it in local
coordinates (locally the cocycle Sr coincides with the operation {, }3 in the
Moyal bracket).

Corollary of the lemma. The cocycle Sp defines a non-trivial extension of the
Lie algebra of contact vector fields on Μ by the space of contact l-forms:

0 -» *i(M) — h(M) θ Τχ(Μ) -»t)(M) -* 0.
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We return to the proof of the theorem. We shall prove it by induction
on k. We use the Jacobi identity for the brackets (11.1). At level k we obtain
the relation

(11.3)
Jb- l

. m = S

which coincides with the identities (2.10), which we called higher Jacobi
identities. It immediately follows from this that the differential dP^ is an
operation of "weight" 2k+ 1. More precisely,

The differential preserves the homogeneity condition. On the space of
homogeneous 3-cochains of degree of homogeneity greater than 3 the operator
d~x (on the image of d) is defined in the natural way (compare [57], p. 932).

This follows from the classification of the three-dimensional cohomology
(Proposition 8.2). Therefore there exists a unique operator Pk with the
condition (11.2), as was required.

Now the construction of §3 can be applied. The result of this is a series of
extensions f) m (M)() of the Lie algebra f](M). This proves Theorem 1.1.
Analogous arguments prove Theorem 1.3.

Remark 11.1. In [47] the Lie algebras f)m(M) were constructed under the
condition that the contact structure on the manifold Μ is compatible with
some projective structure.

11.2. Central extensions.
Assume that the contact manifold Μ has dimension 4k +1. We construct
non-trivial central extensions of the Lie algebra \)m{M) for m > k under the
assumption that the symplectization bundle S -+ Μ has a section γ which
vanishes nowhere. Our construction will again repeat the construction of
Chapter I (see §4).

Definition 11.1. The space Fk(M) is isomorphic to the space of differential
forms of degree 4k + 1 on M. Therefore an f)(M)-invariant functional

/ : * " * - R

is defined (in Chapter I for the case of the sphere this functional was called
the residue).

We also introduce a radius-function on S. We set r\y = 1 and define r on
the whole manifold S via the action of the group (R * (multiplication by
scalars) as a homogeneous function of degree 1.

Assertion 11.1. The formulae (4.3) define a non-trivial scalar-valued 2-cocycle
on the Lie algebra t)m(M) for m > k.

The proof is carried out like that of Theorem 1.2.
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APPENDIX 1

EXTENSIONS OF THE LIE ALGEBRA OF DIFFERENTIAL OPERATORS

The Lie algebra of differential operators DO(M") on a compact manifold
M" has a non-trivial central extension [6], [49]. In the one-dimensional case a
central extension of the Lie algebra DO(Sl) was first proposed in a paper by
Kac and Peterson [26] (see also [45]). This non-trivial extension is unique.
A central extension of the Lie algebra PDO(Sl) of pseudodifferential operators
on S1 was constructed by Kravchenko and Khesin [27] (see also [28]). The
connection of these Lie algebras with the Gel'fand-Dikii (Dickey) algebras
and so-called FF-algebras was given by Radul [49].

It turns out that central extensions of the Lie algebras DO(Sl) and
PDO(Sl) are connected with the Moyal bracket on IR2. Here we propose an
invariant description of these Lie algebras and of central extensions of them.

We recall that T\ = Tx{Sx) is the space of tensor fields of degree —λ
on S 1. This space is isomorphic to the space of homogeneous functions on
IR2 of degree of homogeneity 2λ. The isomorphism can be defined by the
formula

(1) ψ{τ){άτ)-χ -» ν*χφ(τ),

where r is the radius and τ is an angle. Formula (1) is written in coordinates,
but the isomorphism between tensor fields and homogeneous functions is
invariantly defined. Here the Lie algebra Vect Sl = Τ\ is isomorphic to
the Lie algebra of functions on R 2, homogeneous of degree 2, and the
isomorphism (1) is an isomorphism of Vect S '-modules.

We consider the space

Definition 1. We introduce a Lie algebra structure on the space Τ. An
element F e Τ can be conveniently represented as a formal series:

t"Fk,
t=-oo

where Fk e Τk and t is a formal variable; We define the commutator on Τ
by the formula

(2) { ^ G } t : = 9 ^

Assertion 1. The Lie algebra Τ is isomorphic to the Lie algebra of
pseudodifferential operators of the form

a \ k

on the circle.
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Remark 1. The Lie algebra Τ is actually nothing but the Moyal algebra on
R2\{0} (that is, the deformation of the Poisson bracket on R2\{0}, restricted
to a special class of functions). In fact, the space Τ consists of functions that
are homogeneous on R2\{0} of degree of homogeneity an integer multiple of
two. The operation (2) is the usual Moyal bracket.

The residue is defined as usual, a linear functional

res : Τ -* R

such that

res(F)=

We consider the function log r on R2\{0}.

Assertion 2. a) The mapping α : Τ -* Τ

(3) a(F)= {log r,F}t

defines a non-trivial l-cocycle on Τ.
b) The mapping c : Τ <g> Τ -> R

(4) c(FtG) =

defines a non-trivial 1-cocycle on Τ.

Thus we have defined a central extension of the Lie algebra Τ (that is, a
central extension of the Lie algebra of pseudodifferential operators on S1).

Remark 2. The central extension we have constructed coincides with the
central extension from [27]. Formulae (3) and (4) are another invariant form
of writing the beautiful formula discovered by Kravchenko and Khesin. In
[27] (see also [28]) the cocycle α can be represented in the form

in the language of pseudodifferential symbols. One can verify that the cocycle
c in the components of pseudodifferential operators has the form

= Σ _ A n + 1)

=T7l-f T l+1

APPENDIX 2

EXAMPLES OF EQUATIONS OF KORTEWEG-DE VRIES TYPE

There is a profound and beautiful connection between the Virasoro algebra
and the Korteweg-de Vries (KdV) equation

ii = 3u'u + cu"'
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(where u = u{t, r), ύ — du/dt, u' = du/dr, and c is a scalar). This connection
is that the KdV equation is realized as a vector field on the dual space to the
Virasoro algebra, and this vector field is Hamiltonian simultaneously with
respect to two natural Poisson structures. This realization gives a simple
method of interpreting the KdV equation. This approach is called "the
method of Poisson pairs", the "Lenart scheme", the "Adler scheme", and
others. For the historical details we refer the reader to [37], [38].

Later on this method proved its uniqueness. It has been successfully
applied to other Lie algebras (generalizing the Virasoro algebra). In this way
new integrable systems have been found which generalize the Korteweg-de
Vries equation (see [8]).

This appendix states the problem. We write down equations which are
obtained by a formal application of the method to the Lie algebra (5.5). It is
obvious that these equations are Hamiltonian and that they have several first
integrals. We pose the question of their complete integrability. The proof of
this fact could be obtained if we could find the corresponding analogues of
the Miura transformation [37] (see [8]).

A. Method.
Let 91 be a finite-dimensional Lie algebra, and 91* the space of linear
functionals on 91. There is a natural Poisson structure on 91*, the Kirillov
bracket. Let F and G be functions on 91*. Then

{F,G}(u)={[dF(u),dG(u)},u)>

where Μ is a point of 91*; dF{u) and dG(u) are the differentials of F and G
at the point u and are elements of the space (91*)* ^ 91. Thus, a Poisson
bracket is defined on the space 91*.

Every function Η on 91* corresponds to a Hamiltonian vector field

where adj^^) is the operator of the coadjoint action of the element dH(u) e 91
on the space 91. We denote this field by c(H).

We consider a new Poisson bracket on 91*. We fix an arbitrary element
«o e 91* and set

{F,G}o(u) = ([dF(u),dG(u)},u0).

From the fact that this is a Poisson bracket it follows that the bilinear
functional χ ® y -> ([x,y],u0) is a cocycle on 91. (This cocycle is a
coboundary.)

A Hamiltonian vector field with Hamiltonian in this structure has the form

We denote this field by co(H).
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Assertion A.l. The Poisson brackets {,} and {, }0 satisfy the condition that any
linear combination

(1) "{,} + /?{, }o

is again a Poisson bracket (satisfies the Jacobi identity).

This fact is equivalent to the fact that the mapping x<8> y>->([x,y},iio) is a
2-cocycle on 21.

Remark A.I. Assertion A.I has already been used in [1]. Two Poisson
brackets that satisfy the condition (1) are called a Poisson pair. Not
infrequently the bracket {, }0 is called the first Poisson structure and the
bracket {,} is called the second Poisson structure.

Let x0 e st^ be an arbitrary element of the stabilizer of UQ e 91*. Then the
linear function

7(u) = (xo,u)

is in involution with any function relative to the bracket {, }0 (that is, all the
Hamiltonian fields are tangent to its level curves).

The essence of the method is as follows. We write the Hamiltonian vector
field c(/):

(2) ii = ad;0 u.

An important result is the following.

Assertion A.2. The field c (I) is Hamiltonian relative to the Poisson bracket

{, lo-

in fact, we check that it preserves the bracket {, }0. We let υ0 denote the

field (2). We need to verify that

vo{F, G}0 = {v0F, G}0 + {F, voG}o.

This follows from the condition χ e stUo.
Let I\(u) be the Hamiltonian of the vector field (2) relative to the first

Hamiltonian structure. We consider the Hamiltonian vector field c(/i). (It
turns out that this field is again Hamiltonian relative to the structure {, }0

with Hamiltonian 72(M).) Iterating this procedure, we obtain a chain of
functions I, I\, ..., Ik, ... . In order to prove that at each stage the
Hamiltonian field with Hamiltonian Ik relative to the structure {,} is also
Hamiltonian relative to {, }0, we consider the Poisson bracket

(3) {,}ο + ε{,}·

Assertion A.3. An invariant of the bracket (3) has the form

Ic =I + eh + --- + ekIk + ... .
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Indeed, a Hamiltonian field with Hamiltonian 7e relative to the bracket (3)
has the form

By hypothesis this field is equal to zero (since Ιε is an invariant of the
bracket (3)). Therefore we obtain the condition co(4) = c(/fe_i).

Assertion A.4. All the functions Ik are in involution with each other:

In fact, suppose that k < n. Then

{4,/„} = {Ik+uIn}0 = {/*+1,/»_i}

Continuing the chain of equalities, we obtain {//, /,} = 0 or {/,, 7,}0 = 0.
Thus the method of Poisson pairs allows us to construct a chain of

functions Ik in involution. This means that all the functions are first integrals
of each of the vector fields c{Ik). One can hope that the integrals Ik turn out
to be sufficient to prove their integrability. There are no general theorems on
this subject, and the integrability must be verified separately for each Lie
algebra.

B. An equation of Korteweg-de Vries type for the extended Virasoro algebra (5.5).
We give here the result of the computations for the Lie algebra (5.5):

u = 3(u«)' - λ(ν')' = 2ti(r)i> - f w<6V - 2(vlvv - vmv')m + cvm,

ν - 3u't>,

where λ, c are parameters and u(x) and υ(χ) are functions.
This equation is obtained by applying the formal scheme. The corresponding

Miura transformation (and hence whether it is completely integrable) is
unknown.

It is also interesting to consider the analogous equation in the case of the
contact Virasoro algebra.
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