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Abstract. LetM be a smooth manifold, S the space of polynomial on ¢bers functions on T�M
(i.e., of symmetric contravariant tensor ¢elds).We compute the ¢rst cohomology space of the
Lie algebra, Vect�M�, of vector ¢elds on M with coef¢cients in the space of linear differential
operators on S. This cohomology space is closely related to the Vect�M�-modules, Dl�M�, of
linear differential operators on the space of tensor densities on M of degree l.
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1. Introduction and the Main Theorem

Let M be a smooth manifold and Vect�M� the Lie algebra of vector ¢elds on M.
The main purpose of this article is to study the cohomology of Vect�M� with

coef¢cients in the space of linear differential operators acting on tensor ¢elds. This
cohomology is, actually, a natural generalization of the Gelfand^Fuchs cohomology
(i.e., of Vect�M�-cohomology with coef¢cients in the modules of tensor ¢elds onM).

The problem of computation of such cohomology spaces naturally arises if one
considers deformations of the Vect�M�-module structure on the space of tensor
¢elds.

The general theory of deformations of Lie algebra modules is due to Nijenhuis and
Richardson [13, 15]. Let g be a Lie algebra and V a g-module, then the problem of
deformation of the g-module structure on V is related to the cohomology spaces:
H1�g;End�V �� and H2�g;End�V ��. More precisely, the ¢rst cohomology space
classi¢es in¢nitesimal deformation, while the second one contains the obstructions
to integrability of a given in¢nitesimal deformation.

The origin of our investigation is related to the space of scalar linear differential
operators on M viewed as a module over Vect�M�. It is quite clear a-priori that
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this module should be considered as a deformation of the corresponding module of
symbols (i.e., of polynomial on ¢bers functions on T�M). We are, therefore, led
to study the ¢rst cohomology of Vect�M� with coef¢cients in the Vect�M�-module
of operators on the space of symbols.

1.1. DIFFERENTIAL OPERATORS ON SYMMETRIC CONTRAVARIANT TENSOR FIELDS

Consider the space, S�M� (or S for short), of symmetric contravariant tensor ¢elds
on M (i.e., S � G�STM�). As a Vect�M�-module it is isomorphic to the space of
smooth functions onT�M polynomial on the ¢bers. Therefore, S is a Poisson algebra
with a natural graduation given by the decomposition

S �
M1
k�0
Sk; �1:1�

where Sk is the space of kth order tensor ¢elds. Obviously, S0 is isomorphic to
C1�M� and S1 to Vect�M�. The Poisson bracket on S is usually called the
(symmetric) Schouten bracket (see, e.g., [7]).

The action of X 2 Vect�M� on S is given by the Hamiltonian vector ¢eld

LX � @X
@xi

@

@xi
ÿ @X
@xi

@

@xi
; �1:2�

where �x; x� are local coordinates on T�M (we identi¢ed X with the ¢rst-order poly-
nomial X � Xixi; the summation over repeated indices is understood).

Let us introduce the space, D�S�, of all linear differential operators on S. This
space is a Vect�M�-module with a ¢ltration

D0�S� � D1�S� � � � � � Dr�S� � � � � ; �1:3�
where Dr�S� is the space of rth order differential operators.

In this article we compute the ¢rst cohomology space

H1�Vect�M�;D�S��: �1:4�
of Vect�M� acting on D�S�.

Note that forM � S1 this computation has been done in [11, 1] see also [6] for the
case of the Lie algebra of formal vector ¢elds on R.

1.2. MODULES OF DIFFERENTIAL OPERATORS ON TENSOR DENSITIES

Let F l�M� (or F l in short) be the space of tensor densities of degree l onM (i.e. the
space of sections of the line bundle Dl�M� � LnT�M

�� ��
l over M). Clearly,
F 0 � C1�M� as a Vect�M�-module, any two Vect�M�-modules of tensor densities
are nonisomorphic (see also [7]).
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Denote Dl the space D�F l� of linear differential operators on F l. This space is an
associative (and, therefore, a Lie) algebra with the ¢ltration by the order of
differentiation:

D0
l � D1

l � � � � � Dk
l � � � � �1:5�

The algebra S is naturally identi¢ed with the associated graded algebra gr�Dl� that is,

Dk
l=Dkÿ1

l � Sk : �1:6�

The corresponding projection sk : Dk
l ! Sk is called the (principal) symbol.

The associative algebra Dl can be naturally interpreted as a nontrivial
deformation of S and constitutes one of the main objects considered in deformation
quantization.

Wewill be interested, however, only in the Vect�M�-module structure onDl rather
than in the whole associative (or Lie algebra) structure. The (tautological) Lie
algebra embedding Vect�M� ,!Dl

X 7!Ll
X ; �1:7�

where Ll
X is the Lie derivative on F l, de¢nes a Vect�M�-module structure on Dl.

Remark 1.1. If M is oriented by a volume form O, then

Ll
X � LX � l divOX : �1:8�

Moreover, Dl and Dm are isomorphic associative algebras. However, as
Vect�M�-modules they are isomorphic if and only if l� m � 1 [3, 10].

1.3. THE MAIN THEOREM

The space D�S� is decomposed, as a Vect�M�-module, into the direct sum:

D�S� �
M
k;`

D�Sk;S`�; �1:9�

where D�Sk;S`� � Hom�Sk;S`�. It would then suf¢ce to compute the cohomology
(1.4) with coef¢cients in each of these modules. Our main result is the following
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THEOREM 1.2. If dimMX 2, then

H1�Vect�M�;D�Sk;S`�� �

R; if kÿ ` � 2;

R; if kÿ ` � 1; ` 6� 0;

R�H1
DR�M�; if kÿ ` � 0;

0; otherwise;

8>>>>><>>>>>:
�1:10�

where H1
DR�M� is the ¢rst space of the de Rham cohomology of M.

The proof will be given in Section 4.

From now on we assume that dimMX 2.

1.4. DIFFERENTIABILITY

As a ¢rst step towards the proof of Theorem 1.2, we will prove now that any
1-cocycle on Vect�M� with values in the space of differential operators D�Sk;S`�
is locally differentiable. Due to the well-known Peetre Theorem [14], this means that
for any g 2 Z1�Vect�M�;D�Sk;S`��, the bilinear map �X ;P� 7!g�X ��P�, where
X 2 Vect�M� and P 2 Sk, is local:

Supp g�X ��P� � SuppX \ SuppP �1:11�
PROPOSITION 1.3. Any 1-cocycle g on Vect�M� with values in D�Sk;S`� is local.

Proof. Let U �M be open and X 2 Vect�M� vanish on U . We have to show that
g�X �jU � 0: Let x0 be any point in U . As is well known, there exists a neighborhood
V � U of x0 and vector ¢elds Xi;X 0i , i � 1; . . . ; r on V such that

X �
X

1W iW r

�Xi;X 0i � and Xi jV � X 0i jV � 0;

where r depends only on the dimension of M. One has, using the fact that g is a
1-cocycle

g�X �jV �
X

1W iW r

�LXig�X 0i �jV ÿ LX 0i g�Xi�jV � � 0: &

2. Nontrivial Cohomology Classes

Let us now describe a natural basis of the above cohomology spaces (1.10).

2.1. CASE k � `

Since Id 2 D�Sk;Sk� is Vect�M�-invariant, c 7!c Id maps any cocycle c to a cocycle
and thus induces a homomorphism H�Vect�M�;C1�M�� ! H�Vect�M�;
D�Sk;Sk��. Theorem 1.2 states that it is an isomorphism in degree one.
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Recall that H�Vect�M�;C1�M�� is well known (see [7]). In particular, given a
covariant derivation r, the 1-cocycles are the maps

ca;o : X 7!a divr�X � � iXo; �2:1�
where a 2 R and o is a closed 1-form, divr being the divergence associated tor. The
cocycle (2.1) is a coboundary if and only if a � 0 and o is exact.

2.2. CASE k � `� 1, ` 6� 0

Consider the exact sequence of Vect�M�-modules

0ÿ!Dkÿ1
l ÿ!Dk

l ÿ!Skÿ! 0: �2:2�

Dividing out by Dkÿ2
l leads to the exact sequence

0ÿ!Skÿ1ÿ!Dk
l=Dkÿ2

l ÿ!Skÿ! 0 �2:3�

Assume k 6� 1 and l 6� 1=2. The sequence (2.3) does not split [12]. Its cohomology
class is a nonzero element in H1�Vect�M�;Hom�Sk;Skÿ1�� (see Appendix). This class
admits a representative with values inD�Sk;Skÿ1�, since the Vect�M�-actions in (2.3)
are differential. It thus de¢nes a nontrivial class in H1�Vect�M�;D�Sk;Skÿ1�� which,
by Theorem 1.2, is a basis of this space.

2.3. CASE k � `� 2

If l � 1=2, it is shown in [12] that the sequence (2.3) is split and that the sequence

0ÿ!Skÿ2ÿ!Dk
1=2=Dkÿ3

1=2 ÿ!Dk
1=2=Dkÿ2

1=2 ÿ! 0 �2:4�

is not. Moreover, the splitting of (2.3) is given by differential projectors. Since (2.3) is
split, the class �Dkÿ1

1=2 ;Dk
1=2� of (2.2) belongs to H1�Vect�M�;Hom�Sk;Dkÿ2

1=2 ��. Since
(2.4) is not split, its projection skÿ2] �Dkÿ1

1=2 ;Dk
1=2� is nonzero (see Lemma 6.2 from

Appendix).
As in the previous case, this projection is easily seen to admit a representative with

values in D�Sk;Skÿ2�. Hence, it provides a basis of H1�Vect�M�;D�Sk;Skÿ2��.

Remark 2.1. In the above Subsections 2.1 and 2.3 we have associated nontrivial
cohomology classes to the exact sequences (2.3) and (2.4). It is important to note
that these classes are `natural' in the following sense. For any open subset
U �M their restrictions to U are precisely the classes associated to the same
sequences upon U .

3. Projectively Equivariant Cohomology

Throughout this section we put M � Rn and nX 2.
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3.1. THE LIE ALGEBRA OF INFINITESIMAL PROJECTIVE TRANSFORMATIONS

The main idea of our proof of Theorem 1.2 is to use the ¢ltration with respect to the
Lie subalgebra

sl�n� 1;R� � Vect�Rn�: �3:1�
It is suggested by the fact that the exact sequence (2.2) that generate our cohomology
is split as a sequence of sl�n� 1;R�-modules [12]. In some sense, this Lie subalgebra
plays the same roª le in our approach as the linear subalgebra gl�n;R� in the tra-
ditional one (cf. [7]).

Recall that the standard action of the Lie algebra sl�n� 1;R� on Rn is generated
by the vector ¢elds

Xi � @

@xi
; Xij � xi

@

@xj
; �Xi � xiE ; �3:2�

where

E � xi
@

@xi
: �3:3�

Observe in particular that Xi and Xij generate an action of the Lie algebra
gl�n;R� j�Rn.

3.2. COMPUTING THE RELATIVE COHOMOLOGY SPACE

In this section we will compute the ¢rst space of the so-called relative cohomology of
Vect�Rn�, i.e. the cohomology of the complex of Vect�Rn�-cochains vanishing on the
subalgebra sl�n� 1;R�. We will prove the following theorem:

THEOREM 3.1. If nX 2, then

H1�Vect�Rn�; sl�n� 1;R�;D�Sk;S`�� �
R; if kÿ ` � 2;
R; if kÿ ` � 1; ` 6� 0;
0; otherwise:

8<: �3:4�

3.3. EQUIVARIANCE PROPERTY

We begin the proof with a simple observation.
Let h � g be a Lie subalgebra and V a g-module. If c : g! V is a 1-cocycle such

that cjh � 0, then it is equivariant with respect to h, i.e.

LX �c�Y �� � c��X ;Y ��; X 2 h; �3:5�
where L stays for the g-action on the module V .

Consequently, our strategy to compute the space of relative cohomology (3.4)
consists, ¢rst, in classifying the sl�n� 1;R�-equivariant linear maps
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c : Vect�R� ! D�Sk;S`� vanishing on sl�n� 1;R� and, second, to isolate among
them the 1-cocycles.

3.4. COMMUTANT OF THE AFFINE LIE ALGEBRA

Consider the space of polynomialsC�x; x� � C�x1; . . . ; xn; x1; . . . ; xn� as a submodule
of S under the action of sl�n� 1;R�. We need to compute the commutant of the
subalgebra gl�n;R� j�Rn, i.e. the algebra of differential operators on C�x; x� com-
muting with the gl�n;R� j�Rn-action.

The differential operators on C�x; x� given by

E � xi
@

@xi
; D � @

@xi
@

@xi
�3:6�

commute with the gl�n;R� j�Rn-action. Let us recall the classical result of the Weyl
invariant theory (see [17]).

PROPOSITION 3.2. The algebra of differential operators onC�x; x� commuting with
the action of the af¢ne Lie algebra, is generated by E and D.

We will call the operators (3.6) the Euler operator and the divergence operator,
respectively. The eigenspaces of E are obviously consist of homogeneous
polynomials in x.

COROLLARY 3.3. The operator Dkÿ` is the unique (up to a constant)
gl�n;R� j�Rn-equivariant differential operator from Sk to S`.

Proof. Any differential operator on Sk is indeed determined by its values on the
subspace C�x; x�. &

The Euler operator E is clearly equivariant with respect to the whole Vect�Rn�. We
will need the commutation relations of the operator D with the quadratic generators
of sl�n� 1;R�.

LEMMA 3.4. For �Xi as in (3.2), one has

�LXi ;D� �
ÿ
2E � �n� 1�� � @

@xi
; �3:7�

Proof. Straightforward. &

3.5. BILINEAR gl�n;R� j�Rn-INVARIANT OPERATORS

We also need to classify the bilinear gl�n;R� j�Rn-invariant differential operators.
For that purpose, let us use a natural identi¢cation

C�x; x� 
C�y; Z� � C�x; x; y; Z�: �3:8�
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There are, obviously, four invariant differential operators D�x;x�;D�y;Z� (the diver-
gence operators with respect to the ¢rst and the second arguments) and
D�x;Z�;D�y;x� (the operators of contraction in terms of tensors). Applying again [17]
one gets the following

PROPOSITION 3.5. Every bilinear differential operator

Sj 
 Sk ! S` �3:9�

invariant with respect to the action of the af¢ne Lie algebra, is a homogeneous poly-
nomial in D�x;x�;D�x;Z�;D�y;x� and D�y;Z� of degree j � kÿ `.

We are now ready to start the proof of Theorem 3.1.

3.6. BILINEAR sl�n� 1;R�-EQUIVARIANT OPERATORS

In view of Section 3.3, we will now classify the sl�n� 1;R�-equivariant linear
differential maps

c : Vect�Rn� ! D�Sk;S`� �3:10�

vanishing on the subalgebra sl�n� 1;R� � Vect�Rn�. We can, equivalently, consider
the equivariant bilinear maps

C : S1 
 Sk ! Skÿp; �3:11�

where p � kÿ `.
By Proposition 3.5, any such operator is of the form

C �
Xp�1
s�0

as
s!�pÿ s� 1�! D

s
�x;Z�D

pÿs�1
�y;Z�

�
�

� bs
�sÿ 1�!�pÿ s� 1�! D�x;x�D

sÿ1
�x;Z�D

pÿs�1
�y;Z�

�
jy�xZ�x

�

�
Xp
s�0

gs
s!�pÿ s�! D�y;x�D

s
�x;Z�D

pÿs
�y;Z� jy�xZ�x

; �3:12�

where as; bs; gs 2 R.
Moreover,

as � bs � gs � 0 for s < 2; �3:13�
since C vanishes on the af¢ne subalgebra and

�kÿ p�a2 � �n� 1�b2 � �pÿ 1�g2 � 0; �3:14�
since C vanishes on the quadratic generators �Xi of sl�n� 1;R�.
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For k � p, we have not to take into account the coef¢cients as in the expression
(3.12) because the corresponding terms vanish when applied to S1 
 Sk.

It is quite easy, using (3.7) and analogous relations with the operators D�x;Z�;D�y;x�
and D�y;Z�, to obtain the necessary and suf¢cient condition for the coef¢cients in
(3.12) for C to be equivariant. One gets the following recurrence relations:

�sÿ 1� as�1 ÿ �2k� nÿ p� sÿ 1� as ÿ gs � 0; �3:15�
�sÿ 1� bs�1 ÿ �2k� nÿ p� sÿ 1� bs ÿ gs � 0; �3:16�
�sÿ 2� gs ÿ �2k� nÿ p� sÿ 1� gsÿ1 � 0; �3:17�
�kÿ p� as�1 � �n� 1� bs�1 � �pÿ s� gs�1 � �kÿ p� s� gs � 0; �3:18�

where 2W sW p. (For k � p, Equation (3.15) has not to be taken into account.)
Now, to solve the system (3.14^3.18), we need the following technical

LEMMA 3.6. If as; bs; gc verify Equations (3.15)^(3.17) and (3.14), then as; bs; gc
verify Equation (3.18).

(A similar result holds true when k � p.)

Proof. Check that for s � 1 Equation (3.18) coincides with (3.14), the result
follows then by induction. &

It is now very easy to get the complete solution of the system (3.14^3.17). One has
the following four cases.

(a) For p � 0 and for �p � 1; k � 1� there is no solution.
(b) For �p � 1; kX 2� the system has a one-dimensional space of solutions spanned

by

C1 � 1
2
D2
�x;Z� �

kÿ 1
n� 1

D�x;x�D�x;Z� ; �3:19�

which is, in fact, a just a solution of Equation (3.14).

Remark 3.7. One readily checks that the operator c�X � 2 D�Sk;Skÿ1� given by
(3.19) coincides (up to a constant) with the operator of contraction with the tensor
¢eld

c1�X � � @

@xi
@

@xj
�X `� � 2

n� 1
d`j

@

@xi
@

@xs
�Xs�

� �
dxidxj 
 x` �3:20�

This expression is obviously a 1-cocycle. The expression (3.20) is known in the litera-
ture as the Lie derivative of a £at projective connection (cf., e.g., [8]).

(c) For pX 2; k > p, the system (3.15)^(3.17) under the condition (3.14), has a
two-dimensional space of solutions parametrized by �a2; b2�.
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(d) For p � kX 2, Equation (3.15) should be discarded. The space of solutions is
again one-dimensional.

3.7. PROJECTIVELY INVARIANT COCYCLES

We will now determine which of the sl�n� 1;R�-equivariant maps (3.10) classi¢ed in
the preceding section are 1-cocycles. Let us examine separately the cases (b)^(d).

(b) In the simplest case, p � 1, one easily checks that the unique
sl�n� 1;R�-equivariant map (3.19), indeed, de¢nes a 1-cocycle on Vect�Rn�
with values in D0�Sk;Skÿ1�.

(c) The cocycle relation adds the equation b3 � 2b2 to the general system (3.15^3.17).

In the case p � 2, one checks by a straightforward computation, that the solutions
are the constant multiples of the solution given by

a2 � 2; a3 � 2k� n� 1;
b2 � 1; b3 � 2;
d2 � ÿ�2k� nÿ 3�: �3:21�

In the case p > 2, the only solution of the system (3.15)^(3.17) together with the
equation b3 � 2b2 is zero.

(d) If k � p, then the nontrivial solutions of the system are cocycles if and only if
k � p � 2. This cocycle is precisely of the form (3.21) disregarding a2 and a3.

PROPOSITION 3.8. The 1-cocycles on Vect�Rn� de¢ned by the formul� (3.19) and
(3.21) are nontrivial.

Proof. This follows immediately from Sections 5.1, 2.3 and the fact that the
sequence (2.2) is split when restricted to sl�n� 1;R�, see [12]. Let us also give
an elementary proof.

Recall that a 1-cocycle on Vect�Rn�with values inD�Sk;S`� is a coboundary if it is
of the form X 7!�LX ;B� for some B 2 D�Sk;S`�. Moreover, the 1-cocycle vanishes
on sl�n� 1;R� if and only if B is sl�n� 1;R�-equivariant.

LEMMA 3.9. (cf. [9]). If k 6� `, there is no sl�n� 1;R�-equivariant operators
B 2 D�Sk;S`� different from zero.

Proof. In virtue of Corollary 3.3, the property of sl�n� 1;R�-equivariance implies,
in particular, that B has to be proportional to Dkÿ`. Now, the commutation relation
(3.7) shows that this operator can never be sl�n� 1;R�-equivariant. &

Proposition 3.8 follows. &
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3.8. PROOF OF THEOREM 3.1

We have shown that there exist unique (up to a constant) 1-cocycles c1 and c2 on
Vect�Rn� with values in D�Sk;Skÿ1� and D�Sk;Skÿ2� respectively, vanishing on
sl�n� 1;R�. These cocycles de¢ne nontrivial classes of relative cohomology.

Theorem 3.1 is proven.

4. Proof of Theorem 1.2

Using the ¢ltration with respect to the subalgebra sl�n� 1;R�, we will ¢rst prove
Theorem 1.2 in the case when M is a vector space and then extend it to an arbitrary
manifold. To that end, we need some more information about the cohomology
of sl�n� 1;R�.

4.1. COHOMOLOGY OF sl�n� 1;R�

The cohomology of the Lie algebra sl�n� 1;R� with coef¢cients in D�Sk;S`� has
been computed in [9].

THEOREM 4.1. The space of cohomology H�sl�n� 1;R�;D�Sk;S`�� is trivial for
k 6� `, for k � ` it is isomorphic to the Grassman algebra of invariant functionals
on gl�n;R�:

H�sl�n� 1;R�;D�Sk;Sk�� �
^

gl�n;R��
� �gl�n;R�

: �4:1�

In particular,

H1�sl�n� 1;R�;D�Sk;S`�� � R; k � `;
0; otherwise

�
�4:2�

and the class of the 1-cocycle X 7!div�X �Id spans that space in the case k � `. (In
fact, it corresponds to the invariant function tr : gl�n;R� ! R.) Note that this
cocycle is just the restriction to sl�n� 1;R� of the cocycle c1;0, see (2.1).

4.2. THE CASE OF Rn

The restriction of a 1-cocycle c : Vect�Rn� ! D�Sk;S`� to sl�n� 1;R� is a 1-cocycle
on sl�n� 1;R�. If k 6� `, then this restriction is trivial and, therefore, c is
cohomological to a 1-cocycle on Vect�Rn� vanishing on sl�n� 1;R�; if k � `, then
the restriction of c to sl�n� 1;R� is cohomological to c1;0 and so cÿ c1;0 is, again,
cohomological to a 1-cocycle on Vect�Rn� vanishing on sl�n� 1;R�. The result then
follows from Theorem 3.1.

Theorem 1.2 is proven for the special case M � Rn.
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4.3. THE GENERAL CASE

Let us now prove Theorem 1.2 for an arbitrary manifold M. Consider a 1-cocycle c
on Vect�M� with values in D�Sk;S`�.

(a) If kÿ ` 6� 0; 1; 2, then in any domain of chart U � Rn, the restriction cjU is a
coboundary, that is c�X �jU � LX �SU �; where SU 2 D�Sk;S`� is some operator
onU. But, onU \ V , one has c�X �jU\V � LX �SU � � LX �SV � and so the operator
SU ÿ SV is invariant. Lemma 3.9 implies SU ÿ SV � 0. Therefore, the SU 's are
the restrictions of some globally de¢ned S 2 D�Sk;S`� and c is its coboundary.

(b) If kÿ ` � 1 or 2, it follows fromTheorem 1.2 for M � Rn that the class of cjU is
determined up to a constant. In view of Remark 2.1, one has thus

cjU � aU gjU � LX �SU �; �4:3�

for some aU 2 R and SU as above, where g is a representative of one of the
classes associated to the sequences (2.3) and (2.4), respectively. On U \ V
one obviously has aU � aV and SU � SV since �aU ÿ aV �gjU\V � @�SU ÿ SV �,
gjU\V is nontrivial and, as above, SU ÿ SV is invariant.

(c) If kÿ ` � 0, one has

cjU � aU c1;0jU � LX �SU �: �4:4�

Once again, aU � aV �:� a� and SU ÿ SV is invariant, but any invariant
operator in D�Sk;Sk� is proportional to the identity so that
SU ÿ SV � bUV Id, where bUV is a constant. It is clear that the bUV 's de¢ne
a �Cech 1-cocycle. If now o is a closed 1-form representing the corresponding
de Rham class, one easily sees that c is cohomologous to ca;o.

Theorem 1.2 is proven.

5. Cocycles Associated to a Connection

Using a torsion free covariant derivation r, it is possible to construct globally
de¢ned cocycles spanning H1�Vect�M�;D�Sk;S`�� for kÿ ` � 1; 2.

5.1. LIE DERIVATIVE OFA CONNECTION

For each vector ¢eld X , the Lie derivative

LX �r� : �Y ;Z� 7!�X ;rYZ� ÿ r�X ;Y �Z ÿrY �X ;Z�

of r is well-known to be a symmetric �1; 2�-tensor ¢eld. It yields a nontrivial
1-cocycle

X 7!LX �r�
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on Vect�M� with values in G�N1
2 TM�. Therefore, for kX 2, the contraction

gr1 �X ��P� � hP;LX �r�i; P 2 Sk; �5:1�

de¢nes a 1-cocycle on Vect�M� with values in D0�Sk;Skÿ1�.

5.2. SECOND-ORDER COHOMOLOGY CLASS AND THE Vey COCYCLE

The last case, ` � kÿ 2, is directly related to deformation quantization.
For any symplectic manifold V , there exists a nonzero class in

H2�C1�V �;C1�V ��. It is given by so-called Vey cocycle usually denoted S3
G (see

[2] and [16] for explicit construction using a connection G on V ).
In the particular, if V � T�M one can choose the connection so that S3

G is homo-
geneous of weight ÿ3, namely, restricted to S � C1�T�M�,

S3
G : Sk 
 S` ! Sk�`ÿ3; �5:2�

see [3] (e.g. choosing G as a lift ofr to T�M). It follows easily from (5.2) that the map
Vect�M� ! D�Sk;Skÿ2� de¢ned by

gr2 �X ��P� � S3
G�X ;P�; P 2 Sk: �5:3�

is a 1-cocycle.

6. Appendix: Approximations of the Class of a Short Exact Sequence of
Modules

6.1. CLASS OF A SHORT EXACT SEQUENCE OF g-MODULES

We will need some general information about short exact sequences of ¢ltered
modules.

Let g be a Lie algebra. Consider an exact sequence of g-modules

0ÿ!A ÿ!i B ÿ!j Cÿ! 0 �6:1�

It is characterized by an element of H1�g;Hom�C;A�� (cf. [7], Sec. 1.4.5). It will be
convenient to denote it �A;B�. Recall that if t : C ! B is a section of j, then
�A;B� is the class of the 1-cocycle gt: g! Hom�C;A� given by

gt�X ��T � � iÿ1�X :t�T � ÿ t�X :T ��; �6:2�

where X 2 g and T 2 C (this expression is well de¢ned since

X :t�T � ÿ t�X :T � 2 ker j�:
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Given a submodule V of A, one has the following commutative diagram:

�6:3�

where iV is the injection of V into A and pA, pB are the projections.
One has the relation �A=V ;B=V � � pA] �A;B�. Moreover, the left vertical of (6.3)

leads to the exact triangle

clH�g;Hom�C;V ��
iV ]

D H�g;Hom�C;A��
pA]

H�g;Hom�C;A=V ��

�6:4�

where D is the connecting homomorphism. One easily obtains the following
proposition:

PROPOSITION 6.1.

(i) The class �A=V ;B=V � vanishes if and only if �A;B� 2 im iV ].
(ii) If �A=V ;B=V � � 0 then the class of the exact sequence

0ÿ!V ÿ!i�iV Bÿ!B=V ÿ! 0 �6:5�

is �V ;B� � �V ;A� � �A;B� and vanishes if and only if �V ;A� � �A;B� � 0.

6.2. CASE OF A FILTERED MODULE

Consider now a £ag of ¢ltered g-modules A0 � A1 � � � � � Ar � � � � and put
Sr � Ar=Arÿ1. Let us study the classes �Ar;Ar�1� of the sequences

0ÿ!Arÿ!Ar�1ÿ!Sr�1ÿ! 0: �6:6�
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The quotient by V � Arÿ1, leads to its `¢rst approximation':

0ÿ!Srÿ!Ar�1=Arÿ1ÿ!Sr�1ÿ! 0: �6:7�
If the sequence (6.7) is split, then �Ar;Ar�1� 2 H1�g;Hom�Sr�1;Arÿ1�� and so

�Arÿ1;Ar�1� � �Arÿ1;Ar� � �Ar;Ar�1� �6:8�
by Proposition 6.1.

The next approximation is a result of the quotient by Arÿ2. Let pr : Ar ! Ar=Arÿ1
be the projection to the quotient-module.

LEMMA 6.2. If the sequence (6.7) is split for all r > 0, but the sequences

0ÿ!Srÿ1ÿ!Ar�1=Arÿ2ÿ!Ar�1=Arÿ1ÿ! 0; �6:9�
for r > 1 are not split, then the class prÿ1]�Ar;Ar�1� does not vanish.

Proof. Since the sequence (6.7) is split, one has prÿ1]�Arÿ1;Ar� � 0. If, in addition,
prÿ1]�Ar;Ar�1� � 0, then by Proposition 6.1

�Arÿ1=Arÿ2;Ar�1=Arÿ2� � prÿ1]�Arÿ1;Ar�1� � prÿ1] �Arÿ1;Ar� � �Ar;Ar�1�� � � 0

and the sequence (6.9) is split. &

Acknowledgements

It is a pleasure to acknowledge numerous fruitful discussions with C. Duval. We are
also thankful to M. De Wilde, V. Fock, and C. Roger for helpful suggestions.

References

1. Bouarroudj, S. and Ovsienko, V.: Three cocycles on Diff �S1� generalizing the Schwarzian
derivative, Internat. Math. Res. Notices, No. 1 (1998), 25^39.

2. De Wilde, M. and Lecomte, P.: Cohomologie 3-diffërentiable de l'alge© bre de Poisson
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(1959), 211^218; 8 (1960), 116^120.

15. Richardson, R. W.: Deformations of subalgebras of Lie algebras, J. Differential Geom. 3
(1969), 289^308.
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